ﻻ يوجد ملخص باللغة العربية
Usually, the liner waveguides with single quantum emitters are utilized as routers to construct the quantum network in quantum information processings. Here, we investigate the influence of the nonlinear dispersion on quantum routing of single surface plasmons, between two metal nanowires with a pair of quantum dots. By using a full quantum theory in real space, we obtain the routing probabilities of a single surface plasmon into the four outports of two plasmonic waveguides scattered by a pair of quantum dots. It is shown that, by properly designing the inter-dot distance and the dot-plasmon couplings, the routing capability of the surface plasmons between the plasmonic waveguide channels can be significantly higher than the relevant network formed by the single-emitter waveguides with the linear dispersions. Interestingly, the present quadratic dispersions in the waveguides deliver the manifest Fano-like resonances of the surface-plasmon transport. Therefore, the proposed double-dot configuration could be utilized as a robust quantum router for controlling the surface-plasmon routing in the plasmonic waveguides and a plasmonic Fano-like resonance controller.
We present a proposal for deterministic quantum teleportation of electrons in a semiconductor nanostructure consisting of a single and a double quantum dot. The central issue addressed in this paper is how to design and implement the most efficient -
A bound state between a quantum emitter (QE) and surface plasmon polaritons (SPPs) can be formed, where the QE is partially stabilized in its excited state. We put forward a general approach for calculating the energy level shift at a negative freque
The ability of graphene to support long-lived, electrically tunable plasmons that interact strongly with light, combined with its highly nonlinear optical response, has generated great expectations for application of the atomically-thin material to n
We propose an approach for achieving ground-state cooling of a nanomechanical resonator (NAMR) capacitively coupled to a triple quantum dot (TQD). This TQD is an electronic analog of a three-level atom in $Lambda$ configuration which allows an electr
In this work, it is considered a nanostructure composed by a quantum dot coupled to two ferromagnets and a superconductor. The transport properties of this system are studied within a generalized mean-field approximation taking into account proximity