ترغب بنشر مسار تعليمي؟ اضغط هنا

Interference effects induced by Andreev bound states in a hybrid nanostructure composed by a quantum dot coupled to ferromagnetic and superconductor leads

214   0   0.0 ( 0 )
 نشر من قبل Ezequiel Costa Siqueira
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, it is considered a nanostructure composed by a quantum dot coupled to two ferromagnets and a superconductor. The transport properties of this system are studied within a generalized mean-field approximation taking into account proximity effects and spin-flip correlations within the quantum dot. It is shown that the zero-bias transmittance for the co-tunneling between the ferromagnetic leads presents a dip whose height depends on the relative orientation of the magnetizations. When the superconductor is coupled to the system, electron-hole correlations between different spin states leads to a resonance in the place of the dip appearing in the transmittance. Such an effect is accompanied by two anti-resonances explained by a leakage of conduction channels from the co-tunneling to the Andreev transport. In the non-equilibrium regime, correlations within the quantum dot introduce a dependence of the resonance condition on the finite bias applied to the ferromagnetic leads. However, it is still possible to observe signatures of the same interference effect in the electrical current.



قيم البحث

اقرأ أيضاً

196 - R. Taranko , T. Kwapinski , 2018
Sub-gap transport properties of a quantum dot (QD) coupled to two superconducting and one metallic leads are studied theoretically, solving the time-dependent equation of motion by the Laplace transform technique. We focus on time-dependent response of the system induced by a sudden switching on the QD-leads couplings, studying the influence of initial conditions on the transient currents and the differential conductance. We derive analytical expressions for measurable quantities and find that they oscillate in time with the frequency governed by the QD-superconducting lead coupling and acquire damping, due to relaxation driven by the normal lead. Period of these oscillations increases with the superconducting phase difference $phi$. In particular, for $phi=pi$ the QD occupancy and the normal current evolve monotonically (without any oscillations) to their stationary values. In such case the induced electron pairing vanishes and the superconducting current is completely blocked. We also analyze time-dependent development of the Andreev bound states. We show, that the measurable conductance peaks do not appear immediately after sudden switching of the QD coupling to external leads but it takes some finite time-interval for the system needs create these Andreev states. Such time-delay is mainly controlled by the QD-normal lead coupling.
93 - Hui Pan , Tsung-Han Lin , 2005
We investigate the spin-flip effects on the Andreev bound states and the supercurrent in a superconductor/quantum-dot/superconductor system theoretically. The spin-flip scattering in the quantum dot can reverse the supercurrent flowing through the sy stem, and one $pi$-junction transition occurs. By controlling the energy level of quantum dot, the supercurrent is reversed back and another $pi$-junction transition appears. The different influences of the spin-flip scattering and the intradot energy level on the supercurrent are interpreted in the picture of Andreev bound states.
We study the spin-resolved transport through single-level quantum dots strongly coupled to ferromagnetic leads in the Kondo regime, with a focus on contact and material asymmetry-related effects. By using the numerical renormalization group method, w e analyze the dependence of relevant spectral functions, linear conductance and tunnel magnetoresistance on the system asymmetry parameters. In the parallel magnetic configuration of the device the Kondo effect is generally suppressed due to the presence of exchange field, irrespective of systems asymmetry. In the antiparallel configuration, on the other hand, the Kondo effect can develop if the system is symmetric. We show that even relatively weak asymmetry may lead to the suppression of the Kondo resonance in the antiparallel configuration and thus give rise to nontrivial behavior of the tunnel magnetoresistance. In addition, by using the second-order perturbation theory we derive general formulas for the exchange field in both magnetic configurations of the system.
83 - Po Zhang , Hao Wu , Jun Chen 2021
We design and investigate an experimental system capable of entering an electron transport blockade regime in which a spin-triplet localized in the path of current is forbidden from entering a spin-singlet superconductor. To stabilize the triplet a d ouble quantum dot is created electrostatically near a superconducting lead in an InAs nanowire. The dots are filled stochastically with electrons of either spin. The superconducting lead is a molecular beam epitaxy grown Al shell. The shell is etched away over a wire segment to make room for the double dot and the normal metal gold lead. The quantum dot closest to the normal lead exhibits Coulomb diamonds, the dot closest to the superconducting lead exhibits Andreev bound states and an induced gap. The experimental observations compare favorably to a theoretical model of Andreev blockade, named so because the triplet double dot configuration suppresses Andreev reflections. Observed leakage currents can be accounted for by finite temperature. We observe the predicted quadruple level degeneracy points of high current and a periodic conductance pattern controlled by the occupation of the normal dot. Even-odd transport asymmetry is lifted with increased temperature and magnetic field. This blockade phenomenon can be used to study spin structure of superconductors. It may also find utility in quantum computing devices that utilize Andreev or Majorana states.
130 - Jin-Song Huang , Jia-Hao Zhang , 2017
Usually, the liner waveguides with single quantum emitters are utilized as routers to construct the quantum network in quantum information processings. Here, we investigate the influence of the nonlinear dispersion on quantum routing of single surfac e plasmons, between two metal nanowires with a pair of quantum dots. By using a full quantum theory in real space, we obtain the routing probabilities of a single surface plasmon into the four outports of two plasmonic waveguides scattered by a pair of quantum dots. It is shown that, by properly designing the inter-dot distance and the dot-plasmon couplings, the routing capability of the surface plasmons between the plasmonic waveguide channels can be significantly higher than the relevant network formed by the single-emitter waveguides with the linear dispersions. Interestingly, the present quadratic dispersions in the waveguides deliver the manifest Fano-like resonances of the surface-plasmon transport. Therefore, the proposed double-dot configuration could be utilized as a robust quantum router for controlling the surface-plasmon routing in the plasmonic waveguides and a plasmonic Fano-like resonance controller.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا