ﻻ يوجد ملخص باللغة العربية
Convolution as inner product has been the founding basis of convolutional neural networks (CNNs) and the key to end-to-end visual representation learning. Benefiting from deeper architectures, recent CNNs have demonstrated increasingly strong representation abilities. Despite such improvement, the increased depth and larger parameter space have also led to challenges in properly training a network. In light of such challenges, we propose hyperspherical convolution (SphereConv), a novel learning framework that gives angular representations on hyperspheres. We introduce SphereNet, deep hyperspherical convolution networks that are distinct from conventional inner product based convolutional networks. In particular, SphereNet adopts SphereConv as its basic convolution operator and is supervised by generalized angular softmax loss - a natural loss formulation under SphereConv. We show that SphereNet can effectively encode discriminative representation and alleviate training difficulty, leading to easier optimization, faster convergence and comparable (even better) classification accuracy over convolutional counterparts. We also provide some theoretical insights for the advantages of learning on hyperspheres. In addition, we introduce the learnable SphereConv, i.e., a natural improvement over prefixed SphereConv, and SphereNorm, i.e., hyperspherical learning as a normalization method. Experiments have verified our conclusions.
Neural networks are a powerful class of nonlinear functions that can be trained end-to-end on various applications. While the over-parametrization nature in many neural networks renders the ability to fit complex functions and the strong representati
Due to the over-parameterization nature, neural networks are a powerful tool for nonlinear function approximation. In order to achieve good generalization on unseen data, a suitable inductive bias is of great importance for neural networks. One of th
Valuable training data is often owned by independent organizations and located in multiple data centers. Most deep learning approaches require to centralize the multi-datacenter data for performance purpose. In practice, however, it is often infeasib
Learning curves model a classifiers test error as a function of the number of training samples. Prior works show that learning curves can be used to select model parameters and extrapolate performance. We investigate how to use learning curves to eva
In the low-data regime, it is difficult to train good supervised models from scratch. Instead practitioners turn to pre-trained models, leveraging transfer learning. Ensembling is an empirically and theoretically appealing way to construct powerful p