ﻻ يوجد ملخص باللغة العربية
In the low-data regime, it is difficult to train good supervised models from scratch. Instead practitioners turn to pre-trained models, leveraging transfer learning. Ensembling is an empirically and theoretically appealing way to construct powerful predictive models, but the predominant approach of training multiple deep networks with different random initialisations collides with the need for transfer via pre-trained weights. In this work, we study different ways of creating ensembles from pre-trained models. We show that the nature of pre-training itself is a performant source of diversity, and propose a practical algorithm that efficiently identifies a subset of pre-trained models for any downstream dataset. The approach is simple: Use nearest-neighbour accuracy to rank pre-trained models, fine-tune the best ones with a small hyperparameter sweep, and greedily construct an ensemble to minimise validation cross-entropy. When evaluated together with strong baselines on 19 different downstream tasks (the Visual Task Adaptation Benchmark), this achieves state-of-the-art performance at a much lower inference budget, even when selecting from over 2,000 pre-trained models. We also assess our ensembles on ImageNet variants and show improved robustness to distribution shift.
Valuable training data is often owned by independent organizations and located in multiple data centers. Most deep learning approaches require to centralize the multi-datacenter data for performance purpose. In practice, however, it is often infeasib
We propose a new gradient-based approach for extracting sub-architectures from a given large model. Contrarily to existing pruning methods, which are unable to disentangle the network architecture and the corresponding weights, our architecture-pruni
Brain imaging data are important in brain sciences yet expensive to obtain, with big volume (i.e., large p) but small sample size (i.e., small n). To tackle this problem, transfer learning is a promising direction that leverages source data to improv
Vision and learning have made significant progress that could improve robotics policies for complex tasks and environments. Learning deep neural networks for image understanding, however, requires large amounts of domain-specific visual data. While c
Learning curves model a classifiers test error as a function of the number of training samples. Prior works show that learning curves can be used to select model parameters and extrapolate performance. We investigate how to use learning curves to eva