ﻻ يوجد ملخص باللغة العربية
We show that neutron star binaries can be ideal laboratories to probe hidden sectors with a long range force. In particular, it is possible for gravitational wave detectors such as LIGO and Virgo to resolve the correction of waveforms from ultralight dark gauge bosons coupled to neutron stars. We observe that the interaction of the hidden sector affects both the gravitational wave frequency and amplitude in a way that cannot be fitted by pure gravity.
Dark matter could be composed of compact dark objects (CDOs). We find that the oscillation of CDOs inside neutron stars can be a detectable source of gravitational waves (GWs). The GW strain amplitude depends on the mass of the CDO, and its frequency
Neutron stars may harbour the true ground state of matter in the form of strange quark matter. If present, this type of matter is expected to be a color superconductor, a consequence of quark pairing with respect to the color/flavor degrees of freedo
With the remarkable advent of gravitational-wave astronomy, we have shed light on previously shrouded events: compact binary coalescences. Neutron stars are promising (and confirmed) sources of gravitational radiation and it proves timely to consider
Gravitational wave searches for continuous-wave signals from neutron stars are especially challenging when the stars spin frequency is unknown a priori from electromagnetic observations and wanders stochastically under the action of internal (e.g. su
We present results from a controlled numerical experiment investigating the effect of stellar density gas on the coalescence of binary black holes (BBHs) and the resulting gravitational waves (GWs). This investigation is motivated by the proposed ste