ﻻ يوجد ملخص باللغة العربية
With the remarkable advent of gravitational-wave astronomy, we have shed light on previously shrouded events: compact binary coalescences. Neutron stars are promising (and confirmed) sources of gravitational radiation and it proves timely to consider the ways in which these stars can be deformed. Gravitational waves provide a unique window through which to examine neutron-star interiors and learn more about the equation of state of ultra-dense nuclear matter. In this work, we study two relevant scenarios for gravitational-wave emission: neutron stars that host (non-axially symmetric) mountains and neutron stars deformed by the tidal field of a binary partner. Although they have yet to be seen with gravitational waves, rotating neutron stars have long been considered potential sources. By considering the observed spin distribution of accreting neutron stars with a phenomenological model for the spin evolution, we find evidence for gravitational radiation in these systems. We study how mountains are modelled in both Newtonian and relativistic gravity and introduce a new scheme to resolve issues with previous approaches to this problem. The crucial component of this scheme is the deforming force that gives the star its non-spherical shape. We find that the force (which is a proxy for the stars formation history), as well as the equation of state, plays a pivotal role in supporting the mountains. Considering a scenario that has been observed with gravitational waves, we calculate the structure of tidally deformed neutron stars, focusing on the impact of the crust. We find that the effect on the tidal deformability is negligible, but the crust will remain largely intact up until merger.
Neutron stars may harbour the true ground state of matter in the form of strange quark matter. If present, this type of matter is expected to be a color superconductor, a consequence of quark pairing with respect to the color/flavor degrees of freedo
Many low-mass X-ray binary (LMXB) systems are observed to contain rapidly spinning neutron stars. The spin frequencies of these systems may be limited by the emission of gravitational waves. This can happen if their mass distribution is sufficiently
Dark matter could be composed of compact dark objects (CDOs). We find that the oscillation of CDOs inside neutron stars can be a detectable source of gravitational waves (GWs). The GW strain amplitude depends on the mass of the CDO, and its frequency
In this work, we consider the possibility of energy release in pulsar magnetospheres deformed by gravitational waves from nearby sources. The strong electromagnetic fields in the magnetospheres may release non-negligible energy despite the weakness o
As is well known, gravitational wave detections of coalescing binaries are standard sirens, allowing a measurement of source distance by gravitational wave means alone. In this paper we explore the analogue of this for continuous gravitational wave e