ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of Interstellar Object A/2017 U1 in a Nearby Young Stellar Association?

114   0   0.0 ( 0 )
 نشر من قبل Eric Gaidos
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We suggest that the kinematics and properties of interstellar object A/2017 U1 point towards its formation in a protoplanetary disk in the ~45 Myr-old Carina or Columba young stellar associations, and subsequent ejection with a low peculiar velocity (1-2 km/sec) during or soon after planet formation inside the ice line. This scenario predicts that the Solar System will encounter more such objects with radiants similar to that of A/2017 U1.



قيم البحث

اقرأ أيضاً

We study the origin of the interstellar object 1I/2017 U1 Oumuamua by juxtaposing estimates based on the observations with simulations. We speculate that objects like Oumuamua are formed in the debris disc as left over from the star and planet format ion process, and subsequently liberated. The liberation process is mediated either by interaction with other stars in the parental star-cluster, by resonant interactions within the planetesimal disc or by the relatively sudden mass loss when the host star becomes a compact object. Integrating backward in time in the Galactic potential together with stars from the Gaia-TGAS catalogue we find that about 1.3Myr ago Oumuamua passed the nearby star HIP 17288 within a mean distance of $1.3$pc. By comparing nearby observed L-dwarfs with simulations of the Galaxy we conclude that the kinematics of Oumuamua is consistent with relatively young objects of $1.1$--$1.7$Gyr. We just met Oumuamua by chance, and with a derived mean Galactic density of $sim 3times 10^{5}$ similarly sized objects within 100,au from the Sun or $sim 10^{14}$ per cubic parsec we expect about 2 to 12 such visitors per year within 1au from the Sun.
98 - Eric Mamajek 2017
The initial Galactic velocity vector for the recently discovered hyperbolic asteroid 1I/Oumuamua (A/2017 U1) is calculated for before its encounter with our solar system. The latest orbit (JPL-13) shows that Oumuamua has eccentricity > 1 at 944sigma, significance (1.19936 +- 0.00021), i.e. clearly unbound. Assuming no non-gravitational forces, the objects inbound Galactic velocity was U, V, W = -11.457, -22.395, -7.746 (+-0.009, +-0.009, +-0.011) km/s (U towards Galactic center), with total heliocentric speed 26.32 +- 0.01 km/s. When the velocity is compared to the local stars, Oumuamua can be ruled out as co-moving with any of the dozen nearest systems, i.e. it does not appear to be associated with any local exo-Oort clouds (most notably that of the Alpha Centauri triple system). Oumuamuas velocity is within 5 km/s of the median Galactic velocity of the stars in the solar neighborhood (<25 pc), and within 2 km/s of the mean velocity of the local M dwarfs. Its velocity appears to be statistically too typical for a body whose velocity was drawn from the Galactic velocity distribution of the local stars (i.e. less than 1 in 500 field stars in the solar neighborhood would have a velocity so close to the median UVW velocity). In the Local Standard of Rest frame (circular Galactic motion), Oumuamua is remarkable for showing both negligible radial (U) and vertical (W) motion, while having a slightly sub-Keplerian circular velocity (V; by ~11 km/s). These calculations strengthen the interpretation that A/2017 U1 has a distant extrasolar origin, but not among the very nearest stars. Any formation mechanism for this interstellar asteroid should account for the coincidence of Oumuamuas velocity being so close to the LSR.
The recently discovered minor body 1I/2017 U1 (`Oumuamua) is the first known object in our Solar System that is not bound by the Suns gravity. Its hyperbolic orbit (eccentricity greater than unity) strongly suggests that it originated outside our Sol ar System; its red color is consistent with substantial space weathering experienced over a long interstellar journey. We carry out an simple calculation of the probability of detecting such an object. We find that the observed detection rate of 1I-like objects can be satisfied if the average mass of ejected material from nearby stars during the process of planetary formation is ~20 Earth masses, similar to the expected value for our Solar System. The current detection rate of such interstellar interlopers is estimated to be 0.2/year, and the expected number of detections over the past few years is almost exactly one. When the Large Synoptic Survey Telescope begins its wide, fast, deep all-sky survey the detection rate will increase to 1/year. Those expected detections will provide further constraints on nearby planetary system formation through a better estimate of the number and properties of interstellar objects.
We present observations of the interstellar interloper 1I/2017 U1 (Oumuamua) taken during its 2017 October flyby of Earth. The optical colors B-V = 0.70$pm$0.06, V-R = 0.45$pm$0.05, overlap those of the D-type Jovian Trojan asteroids and are incompat ible with the ultrared objects which are abundant in the Kuiper belt. With a mean absolute magnitude $H_V$ = 22.95 and assuming a geometric albedo $p_V$ = 0.1, we find an average radius of 55 m. No coma is apparent; we deduce a limit to the dust mass production rate of only $sim$ 2$times$10$^{-4}$ kg s$^{-1}$, ruling out the existence of exposed ice covering more than a few m$^2$ of the surface. Volatiles in this body, if they exist, must lie beneath an involatile surface mantle $gtrsim$0.5 m thick, perhaps a product of prolonged cosmic ray processing in the interstellar medium. The lightcurve range is unusually large at $sim$2.0$pm$0.2 magnitudes. Interpreted as a rotational lightcurve the body has semi-axes $sim$230 m $times$ 35 m. A $sim$6:1 axis ratio is extreme relative to most small solar system asteroids and suggests that albedo variations may additionally contribute to the variability. The lightcurve is consistent with a two-peaked period $sim$8.26 hr but the period is non-unique as a result of aliasing in the data. Except for its unusually elongated shape, 1I/2017 U1 is a physically unremarkable, sub-kilometer, slightly red, rotating object from another planetary system. The steady-state population of similar, $sim$100 m scale interstellar objects inside the orbit of Neptune is $sim$10$^4$, each with a residence time $sim$10 yr.
We have performed a WISE (Wide-Field Infrared Survey Explorer) based study to identify and characterize young stellar objects (YSOs) in 12x12 degree Perseus OB2 association. Spectral energy distribution (SED) slope in range of 3.4-12 micron and a 5si gma selection criteria were used to select our initial sample. Further manual inspection reduced our final catalog to 156 known and 119 YSO candidate. The spatial distribution of newly found YSOs all over the field shows an older generation of star formation which most of its massive members have evolved into main sequence stars. In contrast, the majority of younger members lie within the Perseus molecular cloud and currently active star forming clusters such as NGC1333 and IC348. We also identified additional 66 point sources which passed YSO selection criteria but are likely AGB stars. However their spatial distribution suggests that they may contain a fraction of the YSOs. Comparing our results with the commonly used color-color selections, we found that while color selection method fails in picking up bright but evolved weak disks, our SED fitting method can identify such sources, including transitional disks. In addition we have less contamination with background sources such as galaxies, but in a price of loosing fainter (Jmag > 12) YSOs. Finally we employed a Bayesian Monte Carlo SED fitting method to determine the characteristics of each YSO candidate. Distribution of SED slopes and model driven age and mass confirms separated YSO populations with suggested three age groups of younger than 1 Myr old, 1-5 Myr old, and older than 5 Myrs which agrees with the age of Per OB2 association and currently star forming sites within the cloud.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا