ﻻ يوجد ملخص باللغة العربية
The recently discovered minor body 1I/2017 U1 (`Oumuamua) is the first known object in our Solar System that is not bound by the Suns gravity. Its hyperbolic orbit (eccentricity greater than unity) strongly suggests that it originated outside our Solar System; its red color is consistent with substantial space weathering experienced over a long interstellar journey. We carry out an simple calculation of the probability of detecting such an object. We find that the observed detection rate of 1I-like objects can be satisfied if the average mass of ejected material from nearby stars during the process of planetary formation is ~20 Earth masses, similar to the expected value for our Solar System. The current detection rate of such interstellar interlopers is estimated to be 0.2/year, and the expected number of detections over the past few years is almost exactly one. When the Large Synoptic Survey Telescope begins its wide, fast, deep all-sky survey the detection rate will increase to 1/year. Those expected detections will provide further constraints on nearby planetary system formation through a better estimate of the number and properties of interstellar objects.
The initial Galactic velocity vector for the recently discovered hyperbolic asteroid 1I/Oumuamua (A/2017 U1) is calculated for before its encounter with our solar system. The latest orbit (JPL-13) shows that Oumuamua has eccentricity > 1 at 944sigma,
Oumuamua, the first bona-fide interstellar planetesimal, was discovered passing through our Solar System on a hyperbolic orbit. This object was likely dynamically ejected from an extrasolar planetary system after a series of close encounters with gas
We study the origin of the interstellar object 1I/2017 U1 Oumuamua by juxtaposing estimates based on the observations with simulations. We speculate that objects like Oumuamua are formed in the debris disc as left over from the star and planet format
1I/`Oumuamua is the first confirmed interstellar body in our Solar System. Here we report on observations of `Oumuamua made with the Spitzer Space Telescope on 2017 November 21--22 (UT). We integrated for 30.2~hours at 4.5 micron (IRAC channel 2). We
We present observations of the interstellar interloper 1I/2017 U1 (Oumuamua) taken during its 2017 October flyby of Earth. The optical colors B-V = 0.70$pm$0.06, V-R = 0.45$pm$0.05, overlap those of the D-type Jovian Trojan asteroids and are incompat