ترغب بنشر مسار تعليمي؟ اضغط هنا

A Socially-Aware Incentive Mechanism for Mobile Crowdsensing Service Market

170   0   0.0 ( 0 )
 نشر من قبل Zehui Xiong
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Mobile Crowdsensing has shown a great potential to address large-scale problems by allocating sensing tasks to pervasive Mobile Users (MUs). The MUs will participate in a Crowdsensing platform if they can receive satisfactory reward. In this paper, in order to effectively and efficiently recruit sufficient MUs, i.e., participants, we investigate an optimal reward mechanism of the monopoly Crowdsensing Service Provider (CSP). We model the rewarding and participating as a two-stage game, and analyze the MUs participation level and the CSPs optimal reward mechanism using backward induction. At the same time, the reward is designed taking the underlying social network effects amid the mobile social network into account, for motivating the participants. Namely, one MU will obtain additional benefits from information contributed or shared by local neighbours in social networks. We derive the analytical expressions for the discriminatory reward as well as uniform reward with complete information, and approximations of reward incentive with incomplete information. Performance evaluation reveals that the network effects tremendously stimulate higher mobile participation level and greater revenue of the CSP. In addition, the discriminatory reward enables the CSP to extract greater surplus from this Crowdsensing service market.



قيم البحث

اقرأ أيضاً

Mobile crowdsensing has shown a great potential to address large-scale data sensing problems by allocating sensing tasks to pervasive mobile users. The mobile users will participate in a crowdsensing platform if they can receive satisfactory reward. In this paper, to effectively and efficiently recruit sufficient number of mobile users, i.e., participants, we investigate an optimal incentive mechanism of a crowdsensing service provider. We apply a two-stage Stackelberg game to analyze the participation level of the mobile users and the optimal incentive mechanism of the crowdsensing service provider using backward induction. In order to motivate the participants, the incentive is designed by taking into account the social network effects from the underlying mobile social domain. For example, in a crowdsensing-based road traffic information sharing application, a user can get a better and accurate traffic report if more users join and share their road information. We derive the analytical expressions for the discriminatory incentive as well as the uniform incentive mechanisms. To fit into practical scenarios, we further formulate a Bayesian Stackelberg game with incomplete information to analyze the interaction between the crowdsensing service provider and mobile users, where the social structure information (the social network effects) is uncertain. The existence and uniqueness of the Bayesian Stackelberg equilibrium are validated by identifying the best response strategies of the mobile users. Numerical results corroborate the fact that the network effects tremendously stimulate higher mobile participation level and greater revenue of the crowdsensing service provider. In addition, the social structure information helps the crowdsensing service provider to achieve greater revenue gain.
164 - Jiajun Sun 2014
Mobile crowdsensing (MCS) has been intensively explored recently due to its flexible and pervasive sensing ability. Although many incentive mechanisms have been built to attract extensive user participation, Most of these mechanisms focus only on ind ependent task scenarios, where the sensing tasks are independent of each other. On the contrary, we focus on a periodical task scenario, where each user participates in the same type of sensing tasks periodically. In this paper, we consider the long-term user participation incentive in a general periodical MCS system from a frugality payment perspective. We explore the issue under both semi-online (the intra-period interactive process is synchronous while the inter-period interactive process is sequential and asynchronous during each period) and online user arrival models (the previous two interactive processes are sequential and asynchronous). In particular, we first propose a semi-online frugal incentive mechanism by introducing a Lyapunov method. Moreover, we also extend it to an online frugal incentive mechanism, which satisfies the constant frugality. Besides, the two mechanisms can also satisfy computational efficiency, asymptotical optimality, individual rationality and truthfulness. Through extensive simulations, we evaluate the performance and validate the theoretical properties of our online mechanisms.
189 - Jiajun Sun 2013
Recently, a novel class of incentive mechanisms is proposed to attract extensive users to truthfully participate in crowd sensing applications with a given budget constraint. The class mechanisms also bring good service quality for the requesters in crowd sensing applications. Although it is so important, there still exists many verification and privacy challenges, including users bids and subtask information privacy and identification privacy, winners set privacy of the platform, and the security of the payment outcomes. In this paper, we present a privacy-preserving verifiable incentive mechanism for crowd sensing applications with the budget constraint, not only to explore how to protect the privacies of users and the platform, but also to make the verifiable payment correct between the platform and users for crowd sensing applications. Results indicate that our privacy-preserving verifiable incentive mechanism achieves the same results as the generic one without privacy preservation.
Incentive mechanism plays a critical role in privacy-aware crowdsensing. Most previous studies on co-design of incentive mechanism and privacy preservation assume a trustworthy fusion center (FC). Very recent work has taken steps to relax the assumpt ion on trustworthy FC and allows participatory users (PUs) to add well calibrated noise to their raw sensing data before reporting them, whereas the focus is on the equilibrium behavior of data subjects with binary data. Making a paradigm shift, this paper aim to quantify the privacy compensation for continuous data sensing while allowing FC to directly control PUs. There are two conflicting objectives in such scenario: FC desires better quality data in order to achieve higher aggregation accuracy whereas PUs prefer adding larger noise for higher privacy-preserving levels (PPLs). To achieve a good balance therein, we design an efficient incentive mechanism to REconcile FCs Aggregation accuracy and individual PUs data Privacy (REAP). Specifically, we adopt the celebrated notion of differential privacy to measure PUs PPLs and quantify their impacts on FCs aggregation accuracy. Then, appealing to Contract Theory, we design an incentive mechanism to maximize FCs aggregation accuracy under a given budget. The proposed incentive mechanism offers different contracts to PUs with different privacy preferences, by which FC can directly control PUs. It can further overcome the information asymmetry, i.e., the FC typically does not know each PUs precise privacy preference. We derive closed-form solutions for the optimal contracts in both complete information and incomplete information scenarios. Further, the results are generalized to the continuous case where PUs privacy preferences take values in a continuous domain. Extensive simulations are provided to validate the feasibility and advantages of our proposed incentive mechanism.
120 - Mingshu Cong , Han Yu , Xi Weng 2020
Federated learning (FL) has shown great potential for addressing the challenge of isolated data islands while preserving data privacy. It allows artificial intelligence (AI) models to be trained on locally stored data in a distributed manner. In orde r to build an ecosystem for FL to operate in a sustainable manner, it has to be economically attractive to data owners. This gives rise to the problem of FL incentive mechanism design, which aims to find the optimal organizational and payment structure for the federation in order to achieve a series of economic objectives. In this paper, we present a VCG-based FL incentive mechanism, named FVCG, specifically designed for incentivizing data owners to contribute all their data and truthfully report their costs in FL settings. It maximizes the social surplus and minimizes unfairness of the federation. We provide an implementation of FVCG with neural networks and theoretic proofs on its performance bounds. Extensive numerical experiment results demonstrated the effectiveness and economic reasonableness of FVCG.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا