ﻻ يوجد ملخص باللغة العربية
We present a new cosmological probe for galaxy clusters, the halo sparsity. This characterises halos in terms of the ratio of halo masses measured at two different radii and carries cosmological information encoded in the halo mass profile. Building upon the work of Balmes et al. (2014) we test the properties of the sparsity using halo catalogs from a numerical N-body simulation of ($2.6$ Gpc/h)$^3$ volume with $4096^3$ particles. We show that at a given redshift the average sparsity can be predicted from prior knowledge of the halo mass function. This provides a quantitative framework to infer cosmological parameter constraints using measurements of the sparsity of galaxy clusters. We show this point by performing a likelihood analysis of synthetic datasets with no systematics, from which we recover the input fiducial cosmology. We also perform a preliminary analysis of potential systematic errors and provide an estimate of the impact of baryonic effects on sparsity measurements. We evaluate the sparsity for a sample of 104 clusters with hydrostatic masses from X-ray observations and derive constraints on the cosmic matter density $Omega_m$ and the normalisation amplitude of density fluctuations at the $8$ Mpc h$^{-1}$ scale, $sigma_8$. Assuming no systematics, we find $Omega_m=0.42pm 0.17$ and $sigma_8=0.80pm 0.31$ at $1sigma$, corresponding to $S_8equiv sigma_8sqrt{Omega_m}=0.48pm 0.11$. Future cluster surveys may provide opportunities for precise measurements of the sparsity. A sample of a few hundreds clusters with mass estimate errors at a few percent level can provide competitive cosmological parameter constraints complementary to those inferred from other cosmic probes.
The dark matter halo sparsity provides a direct observational proxy of the halo mass profile, characterizing halos in terms of the ratio of masses within radii which enclose two different overdensities. Previous numerical simulation analyses have sho
Modified Gravity (MG) scenarios have been advocated to account for the dark energy phenomenon in the universe. These models predict departures from General Relativity on large cosmic scales that can be tested through a variety of probes such as obser
Dark Matter (DM) annihilation and decay during the Dark Ages can affect the cosmic ionization history and leave imprints in the Cosmic Microwave Background (CMB) anisotropy spectra. CMB polarization anisotropy can be sensitive to such energy injectio
Data from the AEGIS, COSMOS and ECDFS surveys are combined to infer the bias and dark matter halo mass of moderate luminosity [LX(2-10 keV) = 42.9 erg s-1] X-ray AGN at z~1 via their cross-correlation function with galaxies. In contrast to standard c
Sensitive, wide-area X-ray surveys which would be possible with the WFXT will detect huge samples of virialized objects spanning the mass range from sub-groups to the most massive clusters, and extending in redshift to beyond z=2. These samples will