ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing Dark Matter with Future CMB Measurements

155   0   0.0 ( 0 )
 نشر من قبل Junsong Cang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dark Matter (DM) annihilation and decay during the Dark Ages can affect the cosmic ionization history and leave imprints in the Cosmic Microwave Background (CMB) anisotropy spectra. CMB polarization anisotropy can be sensitive to such energy injection at higher redshifts and help reducing degeneracy with primordial spectral parameters in $Lambda$CDM and astrophysical ionization processes during reionization. In light of a number of upcoming CMB polarization experiments, such as AdvACTPol, AliCPT, CLASS, Simons Observatory, Simons Array, SPT-3G, we estimate their prospective sensitivity in probing dark matter annihilation and decay signals. We find that future missions have 95% C.L. projected limits on DM decay and annihilation rates to orders of $Gamma_chi (tau_{chi}^{-1}) sim 10^{-27}{rm{s}}^{-1}$ and $left<sigma v right>/m_{chi} sim 10^{-29}{rm{cm^3s^{-1}GeV^{-1}}}$ respectively, significantly improving the sensitivity to DM from current experimental bounds.



قيم البحث

اقرأ أيضاً

We study the problem of searching for cosmic string signal patterns in the present high resolution and high sensitivity observations of the Cosmic Microwave Background (CMB). This article discusses a technique capable of recognizing Kaiser-Stebbins e ffect signatures in total intensity anisotropy maps, and shows that the biggest factor that produces confusion is represented by the acoustic oscillation features of the scale comparable to the size of horizon at recombination. Simulations show that the distribution of null signals for pure Gaussian maps converges to a $chi^2$ distribution, with detectability threshold corresponding to a string induced step signal with an amplitude of about 100 $muK$ which corresponds to a limit of roughly $Gmu < 1.5times 10^{-6}$. We study the statistics of spurious detections caused by extra-Galactic and Galactic foregrounds. For diffuse Galactic foregrounds, which represents the dominant source of contamination, we derive sky masks outlining the available region of the sky where the Galactic confusion is sub-dominant, specializing our analysis to the case represented by the frequency coverage and nominal sensitivity and resolution of the Planck experiment.
In this paper we use the current and future cosmic microwave background (CMB) experiments to test the Charge-Parity-Time Reversal (CPT) symmetry. We consider a CPT-violating interaction in the photon sector $mathcal{L}_{rm cs}sim p_mu A_ u tilde{F}^{ mu u}$ which gives rise to a rotation of the polarization vectors of the propagating CMB photons. By combining the nine-year WMAP, BOOMERanG 2003 and BICEP1 observations, we obtain the current constraint on the isotropic rotation angle $bar{alpha} = -2.12 pm 1.14$ ($1sigma$), indicating an about $2sigma$ significance of the CPT violation. Here, we particularly take the systematic errors of CMB measurements into account. Then, we study the effects of the anisotropies of the rotation angle [$Delta{alpha}({bf hat{n}})$] on the CMB polarization power spectra in detail. Due to the small effects, the current CMB polarization data can not constrain the related parameters very well. We obtain the 95% C.L. upper limit of the variance of the anisotropies of the rotation angle $C^alpha(0) < 0.035$ from all the CMB datasets. More interestingly, including the anisotropies of rotation angle could lower the best fit value of $r$ and relax the tension on the constraints of $r$ between BICEP2 and Planck. Finally, we investigate the capabilities of future Planck polarization measurements on $bar{alpha}$ and $Delta{alpha}({bf hat{n}})$. Benefited from the high precision of Planck data, the constraints of the rotation angle can be significantly improved.
Measurements of cosmic microwave background (CMB) anisotropies provide strong evidence for the existence of dark matter and dark energy. They can also test its composition, probing the energy density and particle mass of different dark-matter and dar k-energy components. CMB data have already shown that ultra-light axions (ULAs) with mass in the range $10^{-32}~{rm eV} to 10^{-26}~{rm eV}$ compose a fraction $< 0.01$ of the cosmological critical density. Here, the sensitivity of a proposed CMB-Stage IV (CMB-S4) experiment (assuming a 1 arcmin beam and $< 1~mu K{rm-arcmin}$ noise levels over a sky fraction of 0.4) to the density of ULAs and other dark-sector components is assessed. CMB-S4 data should be $sim 10$ times more sensitive to the ULA energy-density than Planck data alone, across a wide range of ULA masses $10^{-32}< m_{a}< 10^{-23}~{rm eV}$, and will probe axion decay constants of $f_{a}approx 10^{16}~{rm GeV}$, at the grand unified scale. CMB-S4 could improve the CMB lower bound on the ULA mass from $sim 10^{-25}~{rm eV}$ to $10^{-23}~{rm eV}$, nearing the mass range probed by dwarf galaxy abundances and dark-matter halo density profiles. These improvements will allow for a multi-$sigma$ detection of percent-level departures from CDM over a wide range of masses. Much of this improvement is driven by the effects of weak gravitational lensing on the CMB, which breaks degeneracies between ULAs and neutrinos. We also find that the addition of ULA parameters does not significantly degrade the sensitivity of the CMB to neutrino masses. These results were obtained using the axionCAMB code (a modification to the CAMB Boltzmann code), presented here for public use.
If the symmetry breaking inducing the axion occurs after the inflation, the large axion isocurvature perturbations can arise due to a different axion amplitude in each causally disconnected patch. This causes the enhancement of the small-scale densit y fluctuations which can significantly affect the evolution of structure formation. The epoch of the small halo formation becomes earlier and we estimate the abundance of those minihalos which can host the neutral hydrogen atoms to result in the 21cm fluctuation signals. We find that the future radio telescopes, such as the SKA, can put the axion mass bound of order $m_a gtrsim 10^{-13}$ eV for the simple temperature-independent axion mass model, and the bound can be extended to of order $m_a gtrsim 10^{-8}$eV for a temperature-dependent axion mass.
We derive new limits on the elastic scattering cross-section between baryons and dark matter using Cosmic Microwave Background data from the Planck satellite and measurements of the Lyman-alpha forest flux power spectrum from the Sloan Digital Sky Su rvey. Our analysis addresses generic cross sections of the form $sigmapropto v^n$, where v is the dark matter-baryon relative velocity, allowing for constraints on the cross section independent of specific particle physics models. We include high-$ell$ polarization data from Planck in our analysis, improving over previous constraints. We apply a more careful treatment of dark matter thermal evolution than previously done, allowing us to extend our constraints down to dark matter masses of $sim$MeV. We show in this work that cosmological probes are complementary to current direct detection and astrophysical searches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا