ﻻ يوجد ملخص باللغة العربية
Mechanical resonances are used in a wide variety of devices; from smart phone accelerometers to computer clocks and from wireless communication filters to atomic force microscope sensors. Frequency stability, a critical performance metric, is generally assumed to be tantamount to resonance quality factor (the inverse of the linewidth and of the damping). Here we show that frequency stability of resonant nanomechanical sensors can generally be made independent of quality factor. At high bandwidths, we show that quality factor reduction is completely mitigated by increases in signal to noise ratio. At low bandwidths, strikingly, increased damping leads to better stability and sensor resolution, with improvement proportional to damping. We confirm the findings by demonstrating temperature resolution of 50 mu K at 200 Hz bandwidth. These results open the door for high performance ultrasensitive resonant sensors in gaseous or liquid environments, single cell nanocalorimetry, nanoscale gas chromatography, and atmospheric pressure nanoscale mass spectrometry.
We experimentally investigate the nonlinear response of a multilayer graphene resonator using a superconducting microwave cavity to detect its motion. The radiation pressure force is used to drive the mechanical resonator in an optomechanically induc
Carbon nanotubes and graphene allow fabricating outstanding nanomechanical resonators. They hold promise for various scientific and technological applications, including sensing of mass, force, and charge, as well as the study of quantum phenomena at
Successful implementation of a fault-tolerant quantum computation on a system of qubits places severe demands on the hardware used to control the many-qubit state. It is known that an accuracy threshold $P_{a}$ exists for any quantum gate that is to
A mechanical equivalent system is introduced to mimic the behavior of multilayer structures with diffusive spin transport. The analogy allows one to use existing mechanical intuition to predict the influence of various parameters on spin torques and
We present a new paradigm for computation of radiation spectra in the non-linear regime of operation of inverse Compton sources characterized by high laser intensities. The resulting simulations show an unprecedented level of agreement with the exper