ترغب بنشر مسار تعليمي؟ اضغط هنا

Colossal photon bunching in quasiparticle-mediated nanodiamond cathodoluminescence

91   0   0.0 ( 0 )
 نشر من قبل Matthew Feldman
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nanoscale control over the second-order photon correlation function $g^{(2)}(tau)$ is critical to emerging research in nonlinear nanophotonics and integrated quantum information science. Here we report on quasiparticle control of photon bunching with $g^{(2)}(0)>45$ in the cathodoluminescence of nanodiamond nitrogen vacancy (NV$^0$) centers excited by a converged electron beam in an aberration-corrected scanning transmission electron microscope. Plasmon-mediated NV$^0$ cathodoluminescence exhibits a 16-fold increase in luminescence intensity correlated with a three fold reduction in photon bunching compared with that of uncoupled NV$^0$ centers. This effect is ascribed to the excitation of single temporally uncorrelated NV$^0$ centers by single surface plasmon polaritons. Spectrally resolved Hanbury Brown--Twiss interferometry is employed to demonstrate that the bunching is mediated by the NV$^0$ phonon sidebands, while no observable bunching is detected at the zero-phonon line. The data are consistent with fast phonon-mediated recombination dynamics, a conclusion substantiated by agreement between Bayesian regression and Monte Carlo models of superthermal NV$^0$ luminescence.



قيم البحث

اقرأ أيضاً

A characteristic feature of the copper oxide high-temperature superconductors is the dichotomy between the electronic excitations along the nodal (diagonal) and antinodal (parallel to the Cu-O bonds) directions in momentum space, generally assumed to be linked to the d-wave symmetry of the superconducting state. Angle-resolved photoemission measurements in the superconducting state have revealed a quasiparticle spectrum with a d-wave gap structure that exhibits a maximum along the antinodal direction and vanishes along the nodal direction. Subsequent measurements have shown that, at low doping levels, this gap structure persists even in the high-temperature metallic state, although the nodal points of the superconducting state spread out in finite Fermi arcs. This is the so-called pseudogap phase, and it has been assumed that it is closely linked to the superconducting state, either by assigning it to fluctuating superconductivity or by invoking orders which are natural competitors of d-wave superconductors. Here we report experimental evidence that a very similar pseudogap state with a nodal-antinodal dichotomous character exists in a system that is markedly different from a superconductor: the ferromagnetic metallic groundstate of the colossal magnetoresistive bilayer manganite La1.2Sr1.8Mn2O7. Our findings therefore cast doubt on the assumption that the pseudogap state in the copper oxides and the nodal-antinodal dichotomy are hallmarks of the superconductivity state.
We introduce a point-like scanning single-photon source that operates at room temperature and offers an exceptional photostability (no blinking, no bleaching). This is obtained by grafting in a controlled way a diamond nanocrystal (size around 20 nm) with single nitrogen-vacancy color-center occupancy at the apex of an optical probe. As an application, we image metallic nanostructures in the near-field, thereby achieving a near-field scanning single-photon microscopy working at room temperature on the long term. Our work may be of importance to various emerging fields of nanoscience where an accurate positioning of a quantum emitter is required such as for example quantum plasmonics.
Tellurite glass fibers with embedded nanodiamond are attractive materials for quantum photonics applications. Reducing the loss of these fibers in the 600-800 nm wavelength range of nanodiamond fluorescence is essential to exploit the unique properti es of nanodiamond in the new hybrid material. The first part of this study reported the origin of loss in nanodiamond-doped glass and impact of glass fabrication conditions. Here, we report the fabrication of nanodiamond-doped tellurite fibers with significantly reduced loss in the visible through further understanding of the impact of glass fabrication conditions on the interaction of the glass melt with the embedded nanodiamond. We fabricated tellurite fibers containing nanodiamond in concentrations up to 0.7 ppm-weight, while reducing the loss by more than an order of magnitude down to 10 dB/m at 600-800 nm.
Tellurite glass fibers with embedded nanodiamond are attractive materials for quantum photonic applications. Reducing the loss of these fibers in the 600-800 nm wavelength range of nanodiamond fluorescence is essential to exploit the unique propertie s of nanodiamond in the new hybrid material. In the first part of this study, we report the effect of interaction of the tellurite glass melt with the embedded nanodiamond on the loss of the glasses. The glass fabrication conditions such as melting temperature and concentration of NDs added to the melt were found to have critical influence on the interaction. Based on this understanding, we identified promising fabrication conditions for decreasing the loss to levels required for practical applications.
Optical fibres have transformed the way people interact with the world and now permeate many areas of science. Optical fibres are traditionally thought of as insensitive to magnetic fields, however many application areas from mining to biomedicine wo uld benefit from fibre-based remote magnetometry devices. In this work, we realise such a device by embedding nanoscale magnetic sensors into tellurite glass fibres. Remote magnetometry is performed on magnetically active defect centres in nanodiamonds embedded into the glass matrix. Standard optical magnetometry techniques are applied to initialize and detect local magnetic field changes with a measured sensitivity of 26 micron Tesla/square root(Hz). Our approach utilizes straight-forward optical excitation, simple focusing elements, and low power components. We demonstrate remote magnetometry by direct reporting of the magnetic ground states of nitrogen-vacancy defect centres in the optical fibres. In addition, we present and describe theoretically an all-optical technique that is ideally suited to remote fibre-based sensing. The implications of our results broaden the applications of optical fibres, which now have the potential to underpin a new generation of medical magneto-endoscopes and remote mining sensors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا