ترغب بنشر مسار تعليمي؟ اضغط هنا

Nodal quasiparticle in pseudogapped colossal magnetoresistive manganites

66   0   0.0 ( 0 )
 نشر من قبل Norman Mannella
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A characteristic feature of the copper oxide high-temperature superconductors is the dichotomy between the electronic excitations along the nodal (diagonal) and antinodal (parallel to the Cu-O bonds) directions in momentum space, generally assumed to be linked to the d-wave symmetry of the superconducting state. Angle-resolved photoemission measurements in the superconducting state have revealed a quasiparticle spectrum with a d-wave gap structure that exhibits a maximum along the antinodal direction and vanishes along the nodal direction. Subsequent measurements have shown that, at low doping levels, this gap structure persists even in the high-temperature metallic state, although the nodal points of the superconducting state spread out in finite Fermi arcs. This is the so-called pseudogap phase, and it has been assumed that it is closely linked to the superconducting state, either by assigning it to fluctuating superconductivity or by invoking orders which are natural competitors of d-wave superconductors. Here we report experimental evidence that a very similar pseudogap state with a nodal-antinodal dichotomous character exists in a system that is markedly different from a superconductor: the ferromagnetic metallic groundstate of the colossal magnetoresistive bilayer manganite La1.2Sr1.8Mn2O7. Our findings therefore cast doubt on the assumption that the pseudogap state in the copper oxides and the nodal-antinodal dichotomy are hallmarks of the superconductivity state.



قيم البحث

اقرأ أيضاً

We present angle-resolved photoemission studies of (La1-zPrz)2-2xSr1+2xMn2O7 with x=0.4 and z=0.1,0.2 and 0.4 along with density functional theory calculations and x-ray scattering data. Our results show that the bilayer splitting in the ferromagneti c metallic phase of these materials is small, if not completely absent. The charge carriers are therefore confined to a single MnO2-layer, which in turn results in a strongly nested Fermi surface. In addition to this, the spectral function also displays clear signatures of an electronic ordering instability well below the Fermi level. The increase of the corresponding interaction strength with z and its magnitude of ~400 meV make the coupling to a bare phonon highly unlikely. Instead we conclude that fluctuating order, involving electronic and lattice degrees of freedom, cause the observed renormalisation of the spectral features.
High resolution topographic images obtained by scanning tunneling microscope in the insulating state of Pr0.68Pb0.32MnO3 single crystals showed regular stripe-like or zigzag patterns on a width scale of 0.4 - 0.5 nm confirming a high temperature pola ronic state. Spectroscopic studies revealed inhomogeneous maps of zero-bias conductance with small patches of metallic clusters on length scale of 2 - 3 nm only within a narrow temperature range close to the metal-insulator transition. The results give a direct observation of polarons in the insulating state, phase separation of nanometer-scale metallic clusters in the paramagnetic metallic state, and a homogeneous ferromagnetic state.
127 - V. Esposito , L. Rettig , E. Abreu 2017
We use femtosecond x-ray diffraction to study the structural response of charge and orbitally ordered Pr$_{1-x}$Ca$_x$MnO$_3$ thin films across a phase transition induced by 800 nm laser pulses. By investigating the dynamics of both superlattice refl ections and regular Bragg peaks, we disentangle the different structural contributions and analyze their relevant time-scales. The dynamics of the structural and charge order response are qualitatively different when excited above and below a critical fluence $f_c$. For excitations below $f_c$ the charge order and the superlattice is only partially suppressed and the ground state recovers within a few tens of nanosecond via diffusive cooling. When exciting above the critical fluence the superlattice vanishes within approximately half a picosecond followed by a change of the unit cell parameters on a 10 picoseconds time-scale. At this point all memory from the symmetry breaking is lost and the recovery time increases by many order of magnitudes due to the first order character of the structural phase transition.
The electronic properties of many transition metal oxide systems require new ideas concerning the behaviour of electrons in solids for their explanation. A recent example, subsequent to that of cuprate superconductors, is of rare earth manganites dop ed with alkaline earths, namely $Re_{1-x}A_x MnO_3$, which exhibit colossal magnetoresistance, metal insulator transition and many other poorly understood phenomena. Here we show that the strong Jahn Teller coupling between the twofold degenerate ($d_{x^2 -y^2}$ and $d_{3z^2 -r^2}$) $e_g$ orbitals of $Mn$ and lattice modes of vibration (of the oxygen octahedra surrounding the $Mn$ ions) dynamically reorganizes the former into a set of states (which we label $ell$) which are localized with large local lattice distortion and exponentially small intersite overlap, and another set (labelled $b$) which form a broad band. This hitherto unsuspected but microscopically inevitable $coexistence$ of radically different $ell$ and $b$ states, and their relative energies and occupation as influenced by doping $x$, temperature $T$, local Coulomb repulsion $U$ etc., underlies the unique effects seen in manganites. We present results from strong correlation calculations using the dynamical mean-field theory which accord with a variety of observations in the orbital liquid regime (say, for $0.2stackrel{<}sim x stackrel{<}sim 0.5$).We outline extensions to include intersite $ell$ coherence and spatial correlations/long range order.
545 - S. Petit 2008
High resolution spin waves measurements have been carried out in ferromagnetic (F) La(1-x)(Sr,Ca)xMnO3 with x(Sr)=0.15, 0.175, 0.2, 0.3 and x(Ca)=0.3. In all q-directions, close to the zone boundary, the spin wave spectra consist of several energy le vels, with the same values in the metallic and the xapprox 1/8 ranges. Mainly the intensity varies, jumping from the lower energy levels determined in the xapprox 1/8 range to the higher energy ones observed in the metallic state. On the basis of a quantitative agreement found for x(Sr)=0.15 in a model of ordered 2D clusters, the spin wave anomalies of the metallic state can be interpreted in terms of quantized spin waves within the same 2D clusters, embedded in a 3D matrix.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا