ﻻ يوجد ملخص باللغة العربية
We present quantum yield measurements of single layer $textrm{WSe}_2$ (1L-$textrm{WSe}_2$) integrated with high-Q ($Q>10^6$) optical microdisk cavities, using an efficient ($eta>$90%) near-field coupling scheme based on a tapered optical fiber. Coupling of the excitonic emission is achieved by placing 1L-WSe$_2$ to the evanescent cavity field. This preserves the microresonator high intrinsic quality factor ($Q>10^6$) below the bandgap of 1L-WSe$_2$. The nonlinear excitation power dependence of the cavity quantum yield is in agreement with an exciton-exciton annihilation model. The cavity quantum yield is $textrm{QY}_textrm{c}sim10^{-3}$, consistent with operation in the textit{broad emitter} regime (i.e. the emission lifetime of 1L-WSe$_2$ is significantly shorter than the bare cavity decay time). This scheme can serve as a precise measurement tool for the excitonic emission of layered materials into cavity modes, for both in plane and out of plane excitation.
Monolayers (MLs) of transition metal dichalcogenides (TMDs) such as WSe2 and MoSe2 can be placed by dry stamping directly on broadband dielectric resonators, which have the ability to enhance the spontaneous emission rate and brightness of solid-stat
A phononic crystal can control the acoustic coupling between a resonator and its support structure. We micromachine a phononic bandgap shield for high Q silicon nitride membranes and study the driven displacement spectra of the membranes and their su
The magneto-electronic field effects in organic semiconductors at high magnetic fields are described by field-dependent mixing between singlet and triplet states of weakly bound charge carrier pairs due to small differences in their Lande g-factors t
Transition-metal dichalcogenides can be easily produced as atomically thin sheets, exhibiting the possibility to optically polarize and read out the valley pseudospin of extremely stable excitonic quasiparticles present in these 2D semiconductors. He
Ensembles of bismuth donor spins in silicon are promising storage elements for microwave quantum memories due to their long coherence times which exceed seconds. Operating an efficient quantum memory requires achieving critical coupling between the s