ﻻ يوجد ملخص باللغة العربية
A phononic crystal can control the acoustic coupling between a resonator and its support structure. We micromachine a phononic bandgap shield for high Q silicon nitride membranes and study the driven displacement spectra of the membranes and their support structures. We find that inside observed bandgaps the density and amplitude of non-membrane modes are greatly suppressed, and membrane modes are shielded from an external mechanical drive by up to 30 dB.
We report on optomechanical GaAs disk resonators with ultrahigh quality factor - frequency product Qf. Disks standing on a simple pedestal exhibit GHz breathing modes attaining a Qf of 10^13 measured under vacuum at cryogenic temperature. Clamping lo
We present measurements at millikelvin temperatures of the microwave-frequency acoustic properties of a crystalline silicon nanobeam cavity incorporating a phononic bandgap clamping structure for acoustic confinement. Utilizing pulsed laser light to
We present quantum yield measurements of single layer $textrm{WSe}_2$ (1L-$textrm{WSe}_2$) integrated with high-Q ($Q>10^6$) optical microdisk cavities, using an efficient ($eta>$90%) near-field coupling scheme based on a tapered optical fiber. Coupl
Hexagonal boron nitride (hBN) is a wide bandgap van der Waals material that is emerging as a powerful platform for quantum optics and nanophotonics. In this work, we demonstrate whispering gallery mode silica microresonators hybridized with thin laye
We present a technique to fabricate ultrathin (down to 20 nm) uniform electron transparent windows at dedicated locations in a SiN membrane for in situ transmission electron microscopy experiments. An electron-beam (e-beam) resist is spray-coated on