ﻻ يوجد ملخص باللغة العربية
We study the asymptotic properties of the steady state mass distribution for a class of collision kernels in an aggregation-shattering model in the limit of small shattering probabilities. It is shown that the exponents characterizing the large and small mass asymptotic behavior of the mass distribution depend on whether the collision kernel is local (the aggregation mass flux is essentially generated by collisions between particles of similar masses), or non-local (collision between particles of widely different masses give the main contribution to the mass flux). We show that the non-local regime is further divided into two sub-regimes corresponding to weak and strong non-locality. We also observe that at the boundaries between the local and non-local regimes, the mass distribution acquires logarithmic corrections to scaling and calculate these corrections. Exact solutions for special kernels and numerical simulations are used to validate some non-rigorous steps used in the analysis. Our results show that for local kernels, the scaling solutions carry a constant flux of mass due to aggregation, whereas for the non-local case there is a correction to the constant flux exponent. Our results suggest that for general scale-invariant kernels, the universality classes of mass distributions are labeled by two parameters: the homogeneity degree of the kernel and one further number measuring the degree of the non-locality of the kernel.
Non-equilibrium real-space condensation is a phenomenon in which a finite fraction of some conserved quantity (mass, particles, etc.) becomes spatially localised. We review two popular stochastic models of hopping particles that lead to condensation
We analyze a class of energy and wealth redistribution models. We characterize their stationary measures and show that they have a discrete dual process. In particular we show that the wealth distribution model with non-zero propensity can never have
Systems kept out of equilibrium in stationary states by an external source of energy store an energy $Delta U=U-U_0$. $U_0$ is the internal energy at equilibrium state, obtained after the shutdown of energy input. We determine $Delta U$ for two model
We discuss a channel consisting of nodes of a network and lines which connect these nodes and form ways for motion of a substance through the channel. We study stationary flow of substance for channel which arms contain finite number of nodes each an
A stochastic dynamics has a natural decomposition into a drift capturing mean rate of change and a martingale increment capturing randomness. They are two statistically uncorrelated, but not necessarily independent mechanisms contributing to the over