ترغب بنشر مسار تعليمي؟ اضغط هنا

Realization of a quantum random generator certified with the Kochen-Specker theorem

452   0   0.0 ( 0 )
 نشر من قبل Anatoly Kulikov
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Random numbers are required for a variety of applications from secure communications to Monte-Carlo simulation. Yet randomness is an asymptotic property and no output string generated by a physical device can be strictly proven to be random. We report an experimental realization of a quantum random number generator (QRNG) with randomness certified by quantum contextuality and the Kochen-Specker theorem. The certification is not performed in a device-independent way but through a rigorous theoretical proof of each outcome being value-indefinite even in the presence of experimental imperfections. The analysis of the generated data confirms the incomputable nature of our QRNG.



قيم البحث

اقرأ أيضاً

We propose an experimental approach to {it macro}scopically test the Kochen-Specker theorem (KST) with superconducting qubits. This theorem, which has been experimentally tested with single photons or neutrons, concerns the conflict between the conte xtuality of quantum mechnaics (QM) and the noncontextuality of hidden-variable theories (HVTs). We first show that two Josephson charge qubits can be controllably coupled by using a two-level data bus produced by a Josephson phase qubit. Next, by introducing an approach to perform the expected joint quantum measurements of two separated Josephson qubits, we show that the proposed quantum circuits could demonstrate quantum contextuality by testing the KST at a macroscopic level.
Quantum cryptographic protocols based on complementarity are nonsecure against attacks in which complementarity is imitated with classical resources. The Kochen-Specker (KS) theorem provides protection against these attacks, without requiring entangl ement or spatially separated composite systems. We analyze the maximum tolerated noise to guarantee the security of a KS-protected cryptographic scheme against these attacks, and describe a photonic realization of this scheme using hybrid ququarts defined by the polarization and orbital angular momentum of single photons.
We introduce two generalizations of Kochen-Specker (KS) sets: projective KS sets and generalized KS sets. We then use projective KS sets to characterize all graphs for which the chromatic number is strictly larger than the quantum chromatic number. H ere, the quantum chromatic number is defined via a nonlocal game based on graph coloring. We further show that from any graph with separation between these two quantities, one can construct a classical channel for which entanglement assistance increases the one-shot zero-error capacity. As an example, we exhibit a new family of classical channels with an exponential increase.
147 - S. Pironio , A. Acin , S. Massar 2009
Randomness is a fundamental feature in nature and a valuable resource for applications ranging from cryptography and gambling to numerical simulation of physical and biological systems. Random numbers, however, are difficult to characterize mathemati cally, and their generation must rely on an unpredictable physical process. Inaccuracies in the theoretical modelling of such processes or failures of the devices, possibly due to adversarial attacks, limit the reliability of random number generators in ways that are difficult to control and detect. Here, inspired by earlier work on nonlocality based and device independent quantum information processing, we show that the nonlocal correlations of entangled quantum particles can be used to certify the presence of genuine randomness. It is thereby possible to design of a new type of cryptographically secure random number generator which does not require any assumption on the internal working of the devices. This strong form of randomness generation is impossible classically and possible in quantum systems only if certified by a Bell inequality violation. We carry out a proof-of-concept demonstration of this proposal in a system of two entangled atoms separated by approximately 1 meter. The observed Bell inequality violation, featuring near-perfect detection efficiency, guarantees that 42 new random numbers are generated with 99% confidence. Our results lay the groundwork for future device-independent quantum information experiments and for addressing fundamental issues raised by the intrinsic randomness of quantum theory.
In a recent work, it was shown by one of us (EGC) that Bell-Kochen-Specker inequality violations in phenomena satisfying the no-disturbance condition (a generalisation of the no-signalling condition) cannot in general be explained with a faithful cla ssical causal model -- that is, a classical causal model that satisfies the assumption of no fine-tuning. The proof of that claim however was restricted to Bell scenarios involving 2 parties or Kochen-Specker-contextuality scenarios involving 2 measurements per context. Here we show that the result holds in the general case of arbitrary numbers of parties or measurements per context; it is not an artefact of the simplest scenarios. This result unifies, in full generality, Bell nonlocality and Kochen-Specker contextuality as violations of a fundamental principle of classical causality. We identify, however, an implicit assumption in the former proof, making it explicit here: that certain operational symmetries of the phenomenon are reflected in the model, rather than requiring fine-tuned choices of model parameters. This clarifies a subtle but important distinction between Bell nonlocality and Kochen-Specker contextuality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا