ﻻ يوجد ملخص باللغة العربية
Quantum cryptographic protocols based on complementarity are nonsecure against attacks in which complementarity is imitated with classical resources. The Kochen-Specker (KS) theorem provides protection against these attacks, without requiring entanglement or spatially separated composite systems. We analyze the maximum tolerated noise to guarantee the security of a KS-protected cryptographic scheme against these attacks, and describe a photonic realization of this scheme using hybrid ququarts defined by the polarization and orbital angular momentum of single photons.
In a recent work, it was shown by one of us (EGC) that Bell-Kochen-Specker inequality violations in phenomena satisfying the no-disturbance condition (a generalisation of the no-signalling condition) cannot in general be explained with a faithful cla
We propose an experimental approach to {it macro}scopically test the Kochen-Specker theorem (KST) with superconducting qubits. This theorem, which has been experimentally tested with single photons or neutrons, concerns the conflict between the conte
Random numbers are required for a variety of applications from secure communications to Monte-Carlo simulation. Yet randomness is an asymptotic property and no output string generated by a physical device can be strictly proven to be random. We repor
We introduce two generalizations of Kochen-Specker (KS) sets: projective KS sets and generalized KS sets. We then use projective KS sets to characterize all graphs for which the chromatic number is strictly larger than the quantum chromatic number. H
We present a hybrid scheme for quantum computation that combines the modular structure of elementary building blocks used in the circuit model with the advantages of a measurement-based approach to quantum computation. We show how to construct optima