ﻻ يوجد ملخص باللغة العربية
A significant fraction of massive stars are found in multiple systems. The effect of binarity on stellar evolution is poorly constrained. In particular, the role of tides and mass transfer on surface chemical abundances is not constrained observationally. The aim of this study is to investigate the effect of binarity on the stellar properties and surface abundances of massive binaries. We perform a spectroscopic analysis of six Galactic massive binaries. The spectra of individual components are obtained from a spectral disentangling method and are subsequently analyzed by means of atmosphere models. The stellar parameters and CNO surface abundances are determined. Most systems are made of main-sequence stars. Three systems are detached, two are in contact and no information is available for the sixth system. For eleven out of the twelve stars studied the surface abundances are only mildly affected by stellar evolution and mixing. They are not different from those of single stars, within the uncertainties. The secondary of XZ~Cep is strongly chemically enriched. Considering previous determinations of surface abundance in massive binary systems suggests that the effect of tides on chemical mixing is limited, whereas mass transfer and removal of outer layers of the mass donor leads to the appearance of chemically processed material at the surface, although this is not systematic. The evolutionary masses of the components of our six systems are on average 16.5% higher than the dynamical masses. Some systems seem to have reached synchronization, while others may still be in a transitory phase.
Massive star evolution remains only partly constrained. In particular, the exact role of rotation has been questioned by puzzling properties of OB stars in the Magellanic Clouds. Our goal is to study the relation between surface chemical composition
We present phase-resolved spectroscopy of two new short period low accretion rate magnetic binaries, SDSSJ125044.42+154957.3 (Porb = 86 min) and SDSSJ151415.65+074446.5 (Porb = 89 min). Both systems were previously identified as magnetic white dwarfs
A sample of 542 eclipsing binaries (EBs) with periods shorter than 2 d were selected from the Microlensing Observations in Astrophysics (MOA) EB catalogue (Li et al. 2017) for eclipse-time variation analysis. For this sample we were able to obtain th
The formation of massive stars remains poorly understood and little is known about their birth multiplicity properties. Here, we investigate the strikingly low radial-velocity dispersion measured for a sample of 11 massive pre- and near-main-sequence
We investigate the properties of 367 ultra-short period binary candidates selected from 31,000 sources recently identified from Catalina Surveys data. Based on light curve morphology, along with WISE, SDSS and GALEX multi-colour photometry, we identi