ﻻ يوجد ملخص باللغة العربية
A sample of 542 eclipsing binaries (EBs) with periods shorter than 2 d were selected from the Microlensing Observations in Astrophysics (MOA) EB catalogue (Li et al. 2017) for eclipse-time variation analysis. For this sample we were able to obtain the time series from MOA-II that span 9.5yr. We discovered 91 EBs, out of the 542 EBs, with detected light-travel-time effect signals suggesting the presence of tertiary companions of orbiting periods from 250 d-28 yr. The frequency of EBs with tertiary companions in our sample increases as the period decreases and reaches a value of 0.65 for contact binaries with periods shorter than 0.3 d. If only the contact binaries of periods < 0.26d are considered, the frequency even goes to the unit. Our results suggest that contact binaries with periods close to the 0.22-d contact binary limit are commonly accompanied by relatively close tertiary companions.
We present the results of our study of the eclipsing binary systems CSS J112237.1+395219, LINEAR 1286561 and LINEAR 2602707 based on new CCD $B$, $V$, $R_c$ and $I_c$ complete light curves. The ultra-short period nature of the stars citep{Drake2014}
Eclipse time variations have been detected in a number of post common envelope binary systems consisting of a subdwarf B star or white dwarf primary star and cool M type or brown dwarf secondary. In this paper we consider circumbinary hypotheses of t
Four eclipsing binaries, which show apparent changes of period, have been studied with respect to a possible presence of the light time effect. With a least squares method we calculated new light elements of these systems, the mass function of the pr
Photometric observations in V and I bands and low-dispersion spectra of ten ultrashort-period binaries (NSVS 2175434, NSVS 2607629, NSVS 5038135, NSVS 8040227, NSVS 9747584, NSVS 4876238, ASAS 071829-0336.7, SWASP 074658.62+224448.5, NSVS 2729229, NS
We report on the discovery of four ultra-short period (P<0.18 days) eclipsing M-dwarf binaries in the WFCAM Transit Survey. Their orbital periods are significantly shorter than of any other known main-sequence binary system, and are all significantly