ترغب بنشر مسار تعليمي؟ اضغط هنا

Colored Percolation

60   0   0.0 ( 0 )
 نشر من قبل Subhrangshu Manna
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A model named `Colored Percolation has been introduced with its infinite number



قيم البحث

اقرأ أيضاً

Cluster concepts have been extremely useful in elucidating many problems in physics. Percolation theory provides a generic framework to study the behavior of the cluster distribution. In most cases the theory predicts a geometrical transition at the percolation threshold, characterized in the percolative phase by the presence of a spanning cluster, which becomes infinite in the thermodynamic limit. Standard percolation usually deals with the problem when the constitutive elements of the clusters are randomly distributed. However correlations cannot always be neglected. In this case correlated percolation is the appropriate theory to study such systems. The origin of correlated percolation could be dated back to 1937 when Mayer [1] proposed a theory to describe the condensation from a gas to a liquid in terms of mathematical clusters (for a review of cluster theory in simple fluids see [2]). The location for the divergence of the size of these clusters was interpreted as the condensation transition from a gas to a liquid. One of the major drawback of the theory was that the cluster number for some values of thermodynamic parameters could become negative. As a consequence the clusters did not have any physical interpretation [3]. This theory was followed by Frenkels phenomenological model [4], in which the fluid was considered as made of non interacting physical clusters with a given free energy. This model was later improved by Fisher [3], who proposed a different free energy for the clusters, now called droplets, and consequently a different scaling form for the droplet size distribution. This distribution, which depends on two geometrical parameters, has the nice feature that the mean droplet size exhibits a divergence at the liquid-gas critical point.
A hybrid Potts model where a random concentration $p$ of the spins assume $q_0$ states and a random concentration $1-p$ of the spins assume $q>q_0$ states is introduced. It is known that when the system is homogeneous, with an integer spin number $q_ 0$ or $q$, it undergoes a second or a first order transition, respectively. It is argued that there is a concentration $p^ast$ such that the transition nature of the model is changed at $p^ast$. This idea is demonstrated analytically and by simulations for two different types of interaction: the usual square lattice nearest neighboring and the mean field all-to-all interaction. Exact expressions for the second order critical line in concentration-temperature parameter space of the mean field model together with some other related critical properties, are derived.
The recent work by Achlioptas, DSouza, and Spencer opened up the possibility of obtaining a discontinuous (explosive) percolation transition by changing the stochastic rule of bond occupation. Despite the active research on this subject, several ques tions still remain open about the leading mechanism and the properties of the system. We review the largest cluster and the Gaussian models recently introduced. We show that, to obtain a discontinuous transition it is solely necessary to control the size of the largest cluster, suppressing the growth of a cluster differing significantly, in size, from the average one. As expected for a discontinuous transition, a Gaussian cluster-size distribution and compact clusters are obtained. The surface of the clusters is fractal, with the same fractal dimension of the watershed line.
We reconsider the problem of percolation on an equilibrium random network with degree-degree correlations between nearest-neighboring vertices focusing on critical singularities at a percolation threshold. We obtain criteria for degree-degree correla tions to be irrelevant for critical singularities. We present examples of networks in which assortative and disassortative mixing leads to unusual percolation properties and new critical exponents.
We introduce a software generator for a class of emph{colored} (self-correlated) and emph{non-Gaussian} noise, whose statistics and spectrum depend upon only two parameters, $q$ and $tau$. Inspired by Tsallis nonextensive formulation of statistical p hysics, this so-called $q$-distribution is a handy source of self-correlated noise for a large variety of applications. The $q$-noise---which tends smoothly for $q=1$ to Ornstein--Uhlenbeck noise with autocorrelation $tau$---is generated via a stochastic differential equation, using the Heun method (a second order Runge--Kutta type integration scheme). The algorithm is implemented as a stand-alone library in texttt{c++}, available as open source in the texttt{Github} repository. The noises statistics can be chosen at will, by varying only parameter $q$: it has compact support for $q<1$ (sub-Gaussian regime) and finite variance up to $q=5/3$ (supra-Gaussian regime). Once $q$ has been fixed, the noises autocorrelation can be tuned up independently by means of parameter $tau$. This software provides a tool for modeling a large variety of real-world noise types, and is suitable to study the effects of correlation and deviations from the normal distribution in systems of stochastic differential equations which may be relevant for a wide variety of technological applications, as well as for the understanding of situations of biological interest. Applications illustrating how the noise statistics affects the response of a variety of nonlinear systems are briefly discussed. In many of these examples, the systems response turns out to be optimal for some $q eq1$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا