ﻻ يوجد ملخص باللغة العربية
Understanding the transfer of spin angular momentum is essential in modern magnetism research. A model case is the generation of magnons in magnetic insulators by heating an adjacent metal film. Here, we reveal the initial steps of this spin Seebeck effect with <27fs time resolution using terahertz spectroscopy on bilayers of ferrimagnetic yttrium-iron garnet and platinum. Upon exciting the metal with an infrared laser pulse, a spin Seebeck current $j_textrm{s}$ arises on the same ~100fs time scale on which the metal electrons thermalize. This observation highlights that efficient spin transfer critically relies on carrier multiplication and is driven by conduction electrons scattering off the metal-insulator interface. Analytical modeling shows that the electrons dynamics are almost instantaneously imprinted onto $j_textrm{s}$ because their spins have a correlation time of only ~4fs and deflect the ferrimagnetic moments without inertia. Applications in material characterization, interface probing, spin-noise spectroscopy and terahertz spin pumping emerge.
A new measurement technique for the spin Seebeck effect is presented, wherein the normal metal layer used for its detection is exploited simultaneously as a resistive heater and thermometer. We show how the various contributions to the measured total
Exciton Mott transition in Si is investigated by using terahertz time-domain spectroscopy. The excitonic correlation as manifested by the 1s-2p resonance is observed above the Mott density. The scattering rate of charge carriers is prominently enhanc
The generation and manipulation of carrier spin polarization in semiconductors solely by electric fields has garnered significant attention as both an interesting manifestation of spin-orbit physics as well as a valuable capability for potential spin
We report time-resolved magneto-optic Kerr effect measurements of the longitudinal spin Seebeck effect driven by an interfacial temperature difference between itinerant electrons and magnons. The measured time-evolution of spin accumulation induced b
The understanding of how the sub-nanoscale exchange interaction evolves in macroscale correlations and ordered phases of matter, such as magnetism and superconductivity, requires to bridge the quantum and classical worlds. This monumental challenge h