ﻻ يوجد ملخص باللغة العربية
Deep photometric surveys of the Milky Way have revealed diffuse structures encircling our Galaxy far beyond the classical limits of the stellar disk. This paper reviews results from our own and other observational programs, which together suggest that, despite their extreme positions, the stars in these structures were formed in our Galactic disk. Mounting evidence from recent observations and simulations implies kinematic connections between several of these distinct structures. This suggests the existence of collective disk oscillations that can plausibly be traced all the way to asymmetries seen in the stellar velocity distribution around the Sun. There are multiple interesting implications of these findings: they promise new perspectives on the process of disk heating, they provide direct evidence for a stellar halo formation mechanism in addition to the accretion and disruption of satellite galaxies, and, they motivate searches of current and near-future surveys to trace these oscillations across the Galaxy. Such maps could be used as dynamical diagnostics in the emerging field of Galactoseismology, which promises to model the history of interactions between the Milky Way and its entourage of satellites, as well examine the density of our dark matter halo. As sensitivity to very low surface brightness features around external galaxies increases, many more examples of such disk oscillations will likely be identified. Statistical samples of such features not only encode detailed information about interaction rates and mergers, but also about long sought-after dark matter halo densities and shapes. Models for the Milky Ways own Galactoseismic history will therefore serve as a critical foundation for studying the weak dynamical interactions of galaxies across the universe.
We present evidence for a Galactic North-South asymmetry in the number density and bulk velocity of solar neighborhood stars. The number density profile, which is derived from main-sequence stars in the Sloan Digital Sky Survey, shows a (North - Sout
Stellar population studies show that low mass galaxies in all environments exhibit stellar halos that are older and more spherically distributed than the main body of the galaxy. In some cases, there is a significant intermediate age component that e
We investigate the formation of the stellar halos of four simulated disk galaxies using high resolution, cosmological SPH + N-Body simulations. These simulations include a self-consistent treatment of all the major physical processes involved in gala
The stellar halos of galaxies encode their accretion histories. In particular, the median metallicity of a halo is determined primarily by the mass of the most massive accreted object. We use hydrodynamical cosmological simulations from the APOSTLE p
We summarize recent developments in the study of the origin of halo spin profiles and preliminary implications on disk formation. The specific angular-momentum distributions within halos in N-body simulations match a universal shape, M(<j) propto j/(