ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dual Origin of Stellar Halos

352   0   0.0 ( 0 )
 نشر من قبل Adi Zolotov
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the formation of the stellar halos of four simulated disk galaxies using high resolution, cosmological SPH + N-Body simulations. These simulations include a self-consistent treatment of all the major physical processes involved in galaxy formation. The simulated galaxies presented here each have a total mass of ~10^12 M_sun, but span a range of merger histories. These simulations allow us to study the competing importance of in-situ star formation (stars formed in the primary galaxy) and accretion of stars from subhalos in the building of stellar halos in a LambdaCDM universe. All four simulated galaxies are surrounded by a stellar halo, whose inner regions (r < 20 kpc) contain both accreted stars, and an in-situ stellar population. The outer regions of the galaxies halos were assembled through pure accretion and disruption of satellites. Most of the in-situ halo stars formed at high redshift out of smoothly accreted cold gas in the inner 1 kpc of the galaxies potential wells, possibly as part of their primordial disks. These stars were displaced from their central locations into the halos through a succession of major mergers. We find that the two galaxies with recently quiescent merger histories have a higher fraction of in-situ stars (~20-50%) in their inner halos than the two galaxies with many recent mergers (~5-10% in-situ fraction). Observational studies concentrating on stellar populations in the inner halo of the Milky Way will be the most affected by the presence of in-situ stars with halo kinematics, as we find that their existence in the inner few tens of kpc is a generic feature of galaxy formation.



قيم البحث

اقرأ أيضاً

Fully cosmological, high resolution N-Body + SPH simulations are used to investigate the chemical abundance trends of stars in simulated stellar halos as a function of their origin. These simulations employ a physically motivated supernova feedback r ecipe, as well as metal enrichment, metal cooling and metal diffusion. As presented in an earlier paper, the simulated galaxies in this study are surrounded by stellar halos whose inner regions contain both stars accreted from satellite galaxies and stars formed in situ in the central regions of the main galaxies and later displaced by mergers into their inner halos. The abundance patterns ([Fe/H] and [O/Fe]) of halo stars located within 10 kpc of a solar-like observer are analyzed. We find that for galaxies which have not experienced a recent major merger, in situ stars at the high [Fe/H] end of the metallicity distribution function are more [alpha/Fe]-rich than accreted stars at similar [Fe/H]. This dichotomy in the [O/Fe] of halo stars at a given [Fe/H] results from the different potential wells within which in situ and accreted halo stars form. These results qualitatively match recent observations of local Milky Way halo stars. It may thus be possible for observers to uncover the relative contribution of different physical processes to the formation of stellar halos by observing such trends in the halo populations of the Milky Way, and other local L* galaxies.
Observations reveal that quasar host halos at z~2 have large covering fractions of cool dense gas (>~60% for Lyman limit systems within a projected virial radius). Most simulations have so far have failed to explain these large observed covering frac tions. We analyze a new set of 15 simulated massive halos with explicit stellar feedback from the FIRE project, covering the halo mass range M_h~2x10^12-10^13 Msun at z=2. This extends our previous analysis of the circum-galactic medium of high-redshift galaxies to more massive halos. AGN feedback is not included in these simulations. We find Lyman limit system covering fractions consistent with those observed around quasars. The large HI covering fractions arise from star formation-driven galactic winds, including winds from low-mass satellite galaxies that interact with cosmological filaments. We show that it is necessary to resolve these satellite galaxies and their winds to reproduce the large Lyman limit system covering fractions observed in quasar-mass halos. Our simulations predict that galaxies occupying dark matter halos of mass similar to quasars but without a luminous AGN should have Lyman limit system covering fractions comparable to quasars.
144 - Evan N. Kirby 2009
The hierarchical theory of galaxy formation rests on the idea that smaller galactic structures merge to form the galaxies that we see today. The past decade has provided remarkable observational support for this scenario, driven in part by advances i n spectroscopic instrumentation. Multi-object spectroscopy enabled the discovery of kinematically cold substructures around the Milky Way and M31 that are likely the debris of disrupting satellites. Improvements in high-resolution spectroscopy have produced key evidence that the abundance patterns of the Milky Way halo and its dwarf satellites can be explained by Galactic chemical evolution models based on hierarchical assembly. These breakthroughs have depended almost entirely on observations of nearby stars in the Milky Way and luminous red giant stars in M31 and Local Group dwarf satellites. In the next decade, extremely large telescopes will allow observations far down the luminosity function in the known dwarf galaxies, and they will enable observations of individual stars far out in the Galactic halo. The chemical abundance census now available for the Milky Way will become possible for our nearest neighbor, M31. Velocity dispersion measurements now available in M31 will become possible for systems beyond the Local Group such as Sculptor and M81 Group galaxies. Detailed studies of a greater number of individual stars in a greater number of spiral galaxies and their satellites will test hierarchical assembly in new ways because dynamical and chemical evolution models predict different outcomes for halos of different masses in different environments.
212 - Jo Bovy 2015
Narrow stellar streams in the Milky Way halo are uniquely sensitive to dark-matter subhalos, but many of these subhalos may be tidally disrupted. I calculate the interaction between stellar and dark-matter streams using analytical and $N$-body calcul ations, showing that disrupting objects can be detected as low-concentration subhalos. Through this effect, we can constrain the lumpiness of the halo as well as the orbit and present position of individual dark-matter streams. This will have profound implications for the formation of halos and for direct and indirect-detection dark-matter searches.
174 - Stacy Long 2014
We demonstrate that growth of stellar bars in spinning dark matter halos is heavily suppressed in the secular phase of evolution, using numerical simulations of isolated galaxies. In a representative set of models, we show that for values of the cosm ological spin parameter lambda > 0.03, bar growth (in strength and size) becomes increasingly quenched. Furthermore, slowdown of bar pattern speed weakens substantially with increasing `lambda, until it ceases completely. The terminal structure of bars is affected as well, including extent and shape of their boxy/peanut bulges. The essence of this effect lies in the modified angular momentum exchange between the disk and the halo facilitated by the bar. For the first time we have demonstrated that a dark matter halo can emit and not purely absorb angular momentum. Although the halo as a whole is not found to emit, the net transfer of angular momentum from the disk to the halo is significantly reduced or completely eliminated. The paradigm shift implies that the accepted view that disks serve as sources of angular momentum and halos serve as sinks, must be revised. Halos with lambda > 0.03 are expected to form a substantial fraction, based on lognormal distribution of lambda. Dependence of secular bar evolution on halo spin, therefore, implies profound corollaries for the cosmological evolution of galactic disks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا