ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal Scaling Laws in the Dynamics of a Homogeneous Unitary Bose Gas

183   0   0.0 ( 0 )
 نشر من قبل Christoph Eigen
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the dynamics of an initially degenerate homogeneous Bose gas after an interaction quench to the unitary regime at a magnetic Feshbach resonance. As the cloud decays and heats, it exhibits a crossover from degenerate- to thermal-gas behaviour, both of which are characterised by universal scaling laws linking the particle-loss rate to the total atom number $N$. In the degenerate and thermal regimes the per-particle loss rate is $propto N^{2/3}$ and $N^{26/9}$, respectively. The crossover occurs at a universal kinetic energy per particle and at a universal time after the quench, in units of energy and time set by the gas density. By slowly sweeping the magnetic field away from the resonance and creating a mixture of atoms and molecules, we also map out the dynamics of correlations in the unitary gas, which display a universal temporal scaling with the gas density, and reach a steady state while the gas is still degenerate.



قيم البحث

اقرأ أيضاً

The low temperature unitary Bose gas is a fundamental paradigm in few-body and many-body physics, attracting wide theoretical and experimental interest. Here we first present a theoretical model that describes the dynamic competition between two-body evaporation and three-body re-combination in a harmonically trapped unitary atomic gas above the condensation temperature. We identify a universal magic trap depth where, within some parameter range, evaporative cooling is balanced by recombination heating and the gas temperature stays constant. Our model is developed for the usual three-dimensional evaporation regime as well as the 2D evaporation case. Experiments performed with unitary 133 Cs and 7 Li atoms fully support our predictions and enable quantitative measurements of the 3-body recombination rate in the low temperature domain. In particular, we measure for the first time the Efimov inelasticity parameter $eta$ * = 0.098(7) for the 47.8-G d-wave Feshbach resonance in 133 Cs. Combined 133 Cs and 7 Li experimental data allow investigations of loss dynamics over two orders of magnitude in temperature and four orders of magnitude in three-body loss. We confirm the 1/T 2 temperature universality law up to the constant $eta$ *.
We study the stability of a thermal $^{39}$K Bose gas across a broad Feshbach resonance, focusing on the unitary regime, where the scattering length $a$ exceeds the thermal wavelength $lambda$. We measure the general scaling laws relating the particl e-loss and heating rates to the temperature, scattering length, and atom number. Both at unitarity and for positive $a ll lambda$ we find agreement with three-body theory. However, for $a<0$ and away from unitarity, we observe significant four-body decay. At unitarity, the three-body loss coefficient, $L_3 propto lambda^4$, is three times lower than the universal theoretical upper bound. This reduction is a consequence of species-specific Efimov physics and makes $^{39}$K particularly promising for studies of many-body physics in a unitary Bose gas.
Understanding strongly correlated phases of matter, from the quark-gluon plasma to neutron stars, and in particular the dynamics of such systems, $e.g.$ following a Hamiltonian quench, poses a fundamental challenge in modern physics. Ultracold atomic gases are excellent quantum simulators for these problems, thanks to tuneable interparticle interactions and experimentally resolvable intrinsic timescales. In particular, they give access to the unitary regime where the interactions are as strong as allowed by quantum mechanics. Following years of experiments on unitary Fermi gases, unitary Bose gases have recently emerged as a new experimental frontier. They promise exciting new possibilities, including universal physics solely controlled by the gas density and novel forms of superfluidity. Here, through momentum- and time-resolved studies, we explore both degenerate and thermal homogeneous Bose gases quenched to unitarity. In degenerate samples we observe universal post-quench dynamics in agreement with the emergence of a prethermal state with a universal nonzero condensed fraction. In thermal gases, dynamic and thermodynamic properties generically depend on both the gas density $n$ and temperature $T$, but we find that they can still be expressed in terms of universal dimensionless functions. Surprisingly, the total quench-induced correlation energy is independent of the gas temperature. Our measurements provide quantitative benchmarks and new challenges for theoretical understanding.
We have measured the quantum depletion of an interacting homogeneous Bose-Einstein condensate, and confirmed the 70-year old theory of N.N. Bogoliubov. The observed condensate depletion is reversibly tuneable by changing the strength of the interpart icle interactions. Our atomic homogeneous condensate is produced in an optical-box trap, the interactions are tuned via a magnetic Feshbach resonance, and the condensed fraction probed by coherent two-photon Bragg scattering.
Understanding the rich behavior that emerges from systems of interacting quantum particles, such as electrons in materials, nucleons in nuclei or neutron stars, the quark-gluon plasma, and superfluid liquid helium, requires investigation of systems t hat are clean, accessible, and have tunable parameters. Ultracold quantum gases offer tremendous promise for this application largely due to an unprecedented control over interactions. Specifically, $a$, the two-body scattering length that characterizes the interaction strength, can be tuned to any value. This offers prospects for experimental access to regimes where the behavior is not well understood because interactions are strong, atom-atom correlations are important, mean-field theory is inadequate, and equilibrium may not be reached or perhaps does not even exist. Of particular interest is the unitary gas, where $a$ is infinite, and where many aspects of the system are universal in that they depend only on the particle density and quantum statistics. While the unitary Fermi gas has been the subject of intense experimental and theoretical investigation, the degenerate unitary Bose gas has generally been deemed experimentally inaccessible because of three-body loss rates that increase dramatically with increasing $a$. Here, we investigate dynamics of a unitary Bose gas for timescales that are short compared to the loss. We find that the momentum distribution of the unitary Bose gas evolves on timescales fast compared to losses, and that both the timescale for this evolution and the limiting shape of the momentum distribution are consistent with universal scaling with density. This work demonstrates that a unitary Bose gas can be created and probed dynamically, and thus opens the door for further exploration of this novel strongly interacting quantum liquid.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا