ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal Prethermal Dynamics of Bose Gases Quenched to Unitarity

91   0   0.0 ( 0 )
 نشر من قبل Christoph Eigen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding strongly correlated phases of matter, from the quark-gluon plasma to neutron stars, and in particular the dynamics of such systems, $e.g.$ following a Hamiltonian quench, poses a fundamental challenge in modern physics. Ultracold atomic gases are excellent quantum simulators for these problems, thanks to tuneable interparticle interactions and experimentally resolvable intrinsic timescales. In particular, they give access to the unitary regime where the interactions are as strong as allowed by quantum mechanics. Following years of experiments on unitary Fermi gases, unitary Bose gases have recently emerged as a new experimental frontier. They promise exciting new possibilities, including universal physics solely controlled by the gas density and novel forms of superfluidity. Here, through momentum- and time-resolved studies, we explore both degenerate and thermal homogeneous Bose gases quenched to unitarity. In degenerate samples we observe universal post-quench dynamics in agreement with the emergence of a prethermal state with a universal nonzero condensed fraction. In thermal gases, dynamic and thermodynamic properties generically depend on both the gas density $n$ and temperature $T$, but we find that they can still be expressed in terms of universal dimensionless functions. Surprisingly, the total quench-induced correlation energy is independent of the gas temperature. Our measurements provide quantitative benchmarks and new challenges for theoretical understanding.



قيم البحث

اقرأ أيضاً

We study the dynamics of an initially degenerate homogeneous Bose gas after an interaction quench to the unitary regime at a magnetic Feshbach resonance. As the cloud decays and heats, it exhibits a crossover from degenerate- to thermal-gas behaviour , both of which are characterised by universal scaling laws linking the particle-loss rate to the total atom number $N$. In the degenerate and thermal regimes the per-particle loss rate is $propto N^{2/3}$ and $N^{26/9}$, respectively. The crossover occurs at a universal kinetic energy per particle and at a universal time after the quench, in units of energy and time set by the gas density. By slowly sweeping the magnetic field away from the resonance and creating a mixture of atoms and molecules, we also map out the dynamics of correlations in the unitary gas, which display a universal temporal scaling with the gas density, and reach a steady state while the gas is still degenerate.
325 - P. Dyke , A. Hogan , I. Herrera 2021
We present an experimental study of a two component Fermi gas following an interaction quench into the superfluid phase. Starting with a weakly attractive gas in the normal phase, interactions are ramped to unitarity at a range of rates and we measur e the subsequent dynamics as the gas approaches equilibrium. Both the formation and condensation of fermion pairs are mapped via measurements of the pair momentum distribution and can take place on very different timescales, depending on the adiabaticity of the quench. The contact parameter is seen to respond very quickly to changes in the interaction strength, indicating that short-range correlations, based on the occupation of high-momentum modes, evolve far more rapidly than the correlations in low-momentum modes necessary for pair condensation.
205 - A. Rancon , K. Levin 2014
We address the physics of equilibration in ultracold atomic gases following a quench of the interaction parameter. We focus on the momentum distribution of the excitations, $n_{mathbf k}$, and observe that larger ${mathbf k}$ modes will equilibrate f aster, as has been claimed in recent experimental work. We identify three time regimes. At short times $n_{mathbf k}$ exhibits oscillations; these are damped out at intermediate times where the system appears to be in a false-equilibrium. Finally, at longer times, full equilibration occurs. This false-equilibrium is associated with the necessarily slower relaxation of the condensate which sufficiently high ${mathbf k}$-states (of the excitation response) will then quasi-adiabatically follow. Our work bears on the recent literature focus on interaction quench experiments. We take issue with the fact that theories to date assume that the oscillatory regime is adequate for addressing experiments.
The low temperature unitary Bose gas is a fundamental paradigm in few-body and many-body physics, attracting wide theoretical and experimental interest. Here we first present a theoretical model that describes the dynamic competition between two-body evaporation and three-body re-combination in a harmonically trapped unitary atomic gas above the condensation temperature. We identify a universal magic trap depth where, within some parameter range, evaporative cooling is balanced by recombination heating and the gas temperature stays constant. Our model is developed for the usual three-dimensional evaporation regime as well as the 2D evaporation case. Experiments performed with unitary 133 Cs and 7 Li atoms fully support our predictions and enable quantitative measurements of the 3-body recombination rate in the low temperature domain. In particular, we measure for the first time the Efimov inelasticity parameter $eta$ * = 0.098(7) for the 47.8-G d-wave Feshbach resonance in 133 Cs. Combined 133 Cs and 7 Li experimental data allow investigations of loss dynamics over two orders of magnitude in temperature and four orders of magnitude in three-body loss. We confirm the 1/T 2 temperature universality law up to the constant $eta$ *.
We study the early-time dynamics of a degenerate Bose gas after a sudden quench of the interaction strength, starting from a weakly interacting gas. By making use of a time-dependent generalization of the Nozi`eres-Saint-James variational formalism, we describe the crossover of the early-time dynamics from shallow to deep interaction quenches. We analyze the coherent oscillations that characterize both the density of excited states and the Tans contact as a function of the final scattering length. For shallow quenches, the oscillatory behaviour is negligible and the dynamics is universally governed by the healing length and the mean-field interaction energy. By increasing the final scattering length to intermediate values, we reveal a universal regime where the period of the coherent atom-molecule oscillations is set by the molecule binding energy. For the largest scattering lengths we can numerically simulate in the unitary regime, we find a universal scaling behaviour of the typical growth time of the momentum distribution in agreement with recent experimental observations [C. Eigen et al., Nature 563, 221 (2018)].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا