ﻻ يوجد ملخص باللغة العربية
We use first principles calculations to study structural, vibrational and superconducting properties of H$_2$S at pressures $Pge 200$ GPa. The inclusion of zero point energy leads to two different possible dissociations of H$_2$S, namely 3H$_2$S $to$ 2H$_3$S + S and 5H$_2$S $to$ 3H$_3$S + HS$_2$, where both H$_3$S and HS$_2$ are metallic. For H$_3$S, we perform non-perturbative calculations of anharmonic effects within the self-consistent harmonic approximation and show that the harmonic approximation strongly overestimates the electron-phonon interaction ($lambdaapprox 2.64$ at 200 GPa) and T$_c$. Anharmonicity hardens HS bond-stretching modes and softens H--S bond-bending modes. As a result, the electron-phonon coupling is suppressed by $30%$ ($lambdaapprox 1.84$ at 200 GPa). Moreover, while at the harmonic level T$_c$ decreases with increasing pressure, the inclusion of anharmonicity leads to a T$_c$ that is almost independent of pressure. High pressure hydrogen sulfide is a strongly anharmonic superconductor.
The mechanisms for strong electron-phonon coupling predicted for hydrogen-rich alloys with high superconducting critical temperature ($T_c$) are examined within the Migdal-Eliashberg theory. Analysis of the functional derivative of $T_c$ with respect
We present a combined density-functional-perturbation-theory and inelastic neutron scattering study of the lattice dynamical properties of YNi2B2C. In general, very good agreement was found between theory and experiment for both phonon energies and l
If history teaches us anything, it is that the next breakthrough in superconductivity will not be the result of surveying the history of past breakthroughs, as they have almost always been a matter of serendipity resulting from undirected exploration
Two hydrogen-rich materials, H$_3$S and LaH$_{10}$, synthesized at megabar pressures, have revolutionized the field of condensed matter physics providing the first glimpse to the solution of the hundred-year-old problem of room temperature supercondu
Discovery of high-temperature superconductivity in hydrogen-rich compounds has fuelled the enthusiasm for finding materials with more promising superconducting properties among hydrides. However, the ultrahigh pressure needed to synthesize and mainta