ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of the Extremely Large Magnetoresistance in the Semimetal YSb

360   0   0.0 ( 0 )
 نشر من قبل Yong-Lei Wang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electron-hole (e-h) compensation is a hallmark of multi-band semimetals with extremely large magnetoresistance (XMR) and has been considered to be the basis for XMR. Recent spectroscopic experiments, however, reveal that YSb with non-saturating magnetoresistance is uncompensated, questioning the e-h compensation scenario for XMR. Here we demonstrate with magnetoresistivity and angle dependent Shubnikov - de Haas (SdH) quantum oscillation measurements that YSb does have nearly perfect e-h compensation, with a density ratio of $0.95$ for electrons and holes. The density and mobility anisotropy of the charge carriers revealed in the SdH experiments allow us to quantitatively describe the magnetoresistance with an anisotropic multi-band model that includes contributions from all Fermi pockets. We elucidate the role of compensated multi-bands in the occurrence of XMR by demonstrating the evolution of calculated magnetoresistances for a single band and for various combinations of electron and hole Fermi pockets.



قيم البحث

اقرأ أيضاً

Transition-metal dichalcogenides (WTe$_2$ and MoTe$_2$) have drawn much attention, recently, because of the nonsaturating extremely large magnetoresistance (XMR) observed in these compounds in addition to the predictions of likely type-II Weyl semime tals. Contrary to the topological insulators or Dirac semimetals where XMR is linearly dependent on the field, in WTe$_2$ and MoTe$_2$ the XMR is nonlinearly dependent on the field, suggesting an entirely different mechanism. Electron-hole compensation has been proposed as a mechanism of this nonsaturating XMR in WTe$_2$, while it is yet to be clear in the case of MoTe$_2$ which has an identical crystal structure of WTe$_2$ at low temperatures. In this paper, we report low-energy electronic structure and Fermi surface topology of MoTe$_2$ using angle-resolved photoemission spectrometry (ARPES) technique and first-principle calculations, and compare them with that of WTe$_2$ to understand the mechanism of XMR. Our measurements demonstrate that MoTe$_2$ is an uncompensated semimetal, contrary to WTe$_2$ in which compensated electron-hole pockets have been identified, ruling out the applicability of charge compensation theory for the nonsaturating XMR in MoTe$_2$. In this context, we also discuss the applicability of the existing other conjectures on the XMR of these compounds.
We report the magnetoresistance of ScSb, which is a semimetal with a simple rocksalt-type structure. We found that the magnetoresistance reaches $sim$28000 % at 2 K and 14 T in our best sample, and it exhibits a resistivity plateau at low temperature s. The Shubnikov-de Haas oscillations extracted from the magnetoresistance data allow the full construction of the Fermi surface, including the so-called $alpha_3$ pocket which has been missing in other closely related monoantimonides, and an additional hole pocket centered at $Gamma$. The electron concentration ($n$) and the hole concentration ($p$) are extracted from our analysis, which indicate that ScSb is a nearly compensated semimetal with $n/papprox0.93$. The calculated band structure indicates the absence of a band inversion, and the large magnetoresistance in ScSb can be attributed to the nearly perfect compensation of electrons and holes, despite the existence of the additional hole pocket.
Several early transition metal dipnictides have been found to host topological semimetal states and exhibit large magnetoresistance. In this study, we use angle-resolved photoemission spectroscopy (ARPES) and magneto-transport to study the electronic properties of a new transition metal dipnictide ZrP$_2$. We find that ZrP$_2$ exhibits an extremely large and unsaturated magnetoresistance of up to 40,000 % at 2 K, which originates from an almost perfect electron-hole compensation. Our band structure calculations further show that ZrP$_2$ hosts a topological nodal loop in proximity to the Fermi level. Based on the ARPES measurements, we confirm the results of our calculations and determine the surface band structure. Our study establishes ZrP$_2$ as a new platform to investigate near-perfect electron-hole compensation and its interplay with topological band structures.
250 - R. Lou , Y. F. Xu , L.-X. Zhao 2017
While recent advances in band theory and sample growth have expanded the series of extremely large magnetoresistance (XMR) semimetals in transition metal dipnictides $TmPn_2$ ($Tm$ = Ta, Nb; $Pn$ = P, As, Sb), the experimental study on their electron ic structure and the origin of XMR is still absent. Here, using angle-resolved photoemission spectroscopy combined with first-principles calculations and magnetotransport measurements, we performed a comprehensive investigation on MoAs$_2$, which is isostructural to the $TmPn_2$ family and also exhibits quadratic XMR. We resolve a clear band structure well agreeing with the predictions. Intriguingly, the unambiguously observed Fermi surfaces (FSs) are dominated by an open-orbit topology extending along both the [100] and [001] directions in the three-dimensional Brillouin zone. We further reveal the trivial topological nature of MoAs$_2$ by bulk parity analysis. Based on these results, we examine the proposed XMR mechanisms in other semimetals, and conclusively ascribe the origin of quadratic XMR in MoAs$_2$ to the carriers motion on the FSs with dominant open-orbit topology, innovating in the understanding of quadratic XMR in semimetals.
143 - Yongkang Luo , H. Li , Y. M. Dai 2015
We systematically measured the Hall effect in the extremely large magnetoresistance semimetal WTe$_2$. By carefully fitting the Hall resistivity to a two-band model, the temperature dependencies of the carrier density and mobility for both electron- and hole-type carriers were determined. We observed a sudden increase of the hole density below $sim$160~K, which is likely associated with the temperature-induced Lifshitz transition reported by a previous photoemission study. In addition, a more pronounced reduction in electron density occurs below 50~K, giving rise to comparable electron and hole densities at low temperature. Our observations indicate a possible electronic structure change below 50~K, which might be the direct driving force of the electron-hole ``compensation and the extremely large magnetoresistance as well. Numerical simulations imply that this material is unlikely to be a perfectly compensated system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا