ﻻ يوجد ملخص باللغة العربية
Pipelines combining SQL-style business intelligence (BI) queries and linear algebra (LA) are becoming increasingly common in industry. As a result, there is a growing need to unify these workloads in a single framework. Unfortunately, existing solutions either sacrifice the inherent benefits of exclusively using a relational database (e.g. logical and physical independence) or incur orders of magnitude performance gaps compared to specialized engines (or both). In this work we study applying a new type of query processing architecture to standard BI and LA benchmarks. To do this we present a new in-memory query processing engine called LevelHeaded. LevelHeaded uses worst-case optimal joins as its core execution mechanism for both BI and LA queries. With LevelHeaded, we show how crucial optimizations for BI and LA queries can be captured in a worst-case optimal query architecture. Using these optimizations, LevelHeaded outperforms other relational database engines (LogicBlox, MonetDB, and HyPer) by orders of magnitude on standard LA benchmarks, while performing on average within 31% of the best-of-breed BI (HyPer) and LA (Intel MKL) solutions on their own benchmarks. Our results show that such a single query processing architecture is capable of delivering competitive performance on both BI and LA queries.
We consider the problem of incrementally maintaining the triangle count query under single-tuple updates to the input relations. We introduce an approach that exhibits a space-time tradeoff such that the space-time product is quadratic in the size of
We derive an equality for non-equilibrium statistical mechanics in finite-dimensional quantum systems. The equality concerns the worst-case work output of a time-dependent Hamiltonian protocol in the presence of a Markovian heat bath. It has has the
We provide the solution for a fundamental problem of geometric optimization by giving a complete characterization of worst-case optimal disk coverings of rectangles: For any $lambdageq 1$, the critical covering area $A^*(lambda)$ is the minimum value
We provide a tight result for a fundamental problem arising from packing disks into a circular container: The critical density of packing disks in a disk is 0.5. This implies that any set of (not necessarily equal) disks of total area $deltaleq 1/2$
Understanding the semantics of tables at scale is crucial for tasks like data integration, preparation, and search. Table understanding methods aim at detecting a tables topic, semantic column types, column relations, or entities. With the rise of de