ﻻ يوجد ملخص باللغة العربية
We derive an equality for non-equilibrium statistical mechanics in finite-dimensional quantum systems. The equality concerns the worst-case work output of a time-dependent Hamiltonian protocol in the presence of a Markovian heat bath. It has has the form worst-case work = penalty - optimum. The equality holds for all rates of changing the Hamiltonian and can be used to derive the optimum by setting the penalty to 0. The optimum term contains the max entropy of the initial state, rather than the von Neumann entropy, thus recovering recent results from single-shot statistical mechanics. Energy coherences can arise during the protocol but are assumed not to be present initially. We apply the equality to an electron box.
Pipelines combining SQL-style business intelligence (BI) queries and linear algebra (LA) are becoming increasingly common in industry. As a result, there is a growing need to unify these workloads in a single framework. Unfortunately, existing soluti
Measuring the fluctuations of work in coherent quantum systems is notoriously problematic. Aiming to reveal the ultimate source of these problems, we demand of work measurement schemes the sheer minimum and see if those demands can be met at all. We
We present a general quantum fluctuation theorem for the entropy production of an open quantum system whose evolution is described by a Lindblad master equation. Such theorem holds for both local and global master equations, thus settling the dispute
The efficiency at maximum power has been investigated extensively, yet the practical control scheme to achieve it remains elusive. We fill such gap with a stepwise Carnot-like cycle, which consists the discrete isothermal process (DIP) and adiabatic
Work and quantum correlations are two fundamental resources in thermodynamics and quantum information theory. In this work we study how to use correlations among quantum systems to optimally store work. We analyse this question for isolated quantum e