ﻻ يوجد ملخص باللغة العربية
We define systems of pre-extremals for the energy functional of regular rheonomic Lagrange manifolds and show how they induce well-defined Hamilton orthogonal nets. Such nets have applications in the modelling of e.g. wildfire spread under time- and space-dependent conditions. The time function inherited from such a Hamilton net induces in turn a time-independent Finsler metric - we call it the associated frozen metric. It is simply obtained by inserting the time function from the net into the given Lagrangean. The energy pre-extremals then become ordinary Finsler geodesics of the frozen metric and the Hamilton orthogonality property is preserved during the freeze. We compare our results with previous findings of G. W. Richards concerning his application of Huyghens principle to establish the PDE system for Hamilton orthogonal nets in 2D Randers spaces and also concerning his explicit spray solutions for time-only dependent Randers spaces. We analyze examples of time-dependent 2D Randers spaces with simple, yet non-trivial, Zermelo data; we obtain analytic and numerical solutions to their respective energy pre-extremal equations; and we display details of the resulting (frozen) Hamilton orthogonal nets.
Ambrose, Palais and Singer cite{Ambrose} introduced the concept of second order structures on finite dimensional manifolds. Kumar and Viswanath cite{Kumar} extended these results to the category of Banach manifolds. In the present paper all of these
We discuss new sufficient conditions under which an affine manifold $(M, abla)$ is geodesically connected. These conditions are shown to be essentially weaker than those discussed in groundbreaking work by Beem and Parker and in recent work by Alexan
For compact manifolds with infinite fundamental group we present sufficient topological or metric conditions ensuring the existence of two geometrically distinct closed geodesics. We also show how results about generic Riemannian metrics can be carried over to Finsler metrics.
Let $M$ be a differentiable manifold, $T_xM$ be its tangent space at $xin M$ and $TM={(x,y);xin M;y in T_xM}$ be its tangent bundle. A $C^0$-Finsler structure is a continuous function $F:TM rightarrow mathbb [0,infty)$ such that $F(x,cdot): T_xM righ
In this paper, we use a Killing form on a Riemannian manifold to construct a class of Finsler metrics. We find equations that characterize Einstein metrics among this class. In particular, we construct a family of Einstein metrics on $S^3$ with ${rm