ﻻ يوجد ملخص باللغة العربية
Ambrose, Palais and Singer cite{Ambrose} introduced the concept of second order structures on finite dimensional manifolds. Kumar and Viswanath cite{Kumar} extended these results to the category of Banach manifolds. In the present paper all of these results are generalized to a large class of Frechet manifolds. It is proved that the existence of Christoffel and Hessian structures, connections, sprays and dissections are equivalent on those Frechet manifolds which can be considered as projective limits of Banach manifolds. These concepts provide also an alternative way for the study of ordinary differential equations on non-Banach infinite dimensional manifolds. Concrete examples of the structures are provided using direct and flat connections.
We define systems of pre-extremals for the energy functional of regular rheonomic Lagrange manifolds and show how they induce well-defined Hamilton orthogonal nets. Such nets have applications in the modelling of e.g. wildfire spread under time- and
We shall give a twisted Dirac structure on the space of irreducible connections on a SU(n)-bundle over a three-manifold, and give a family of twisted Dirac structures on the space of irreducible connections on the trivial SU(n)-bundle over a four-man
We define flag structures on a real three manifold M as the choice of two complex lines on the complexified tangent space at each point of M. We suppose that the plane field defined by the complex lines is a contact plane and construct an adapted con
Every Riemannian metric or Finsler metric on a manifold induces a spray via its geodesics. In this paper, we discuss several expressions for the X-curvature of a spray. We show that the sprays obtained by a projective deformation using the S-curvatur
We obtain a Central Limit Theorem for closed Riemannian manifolds, clarifying along the way the geometric meaning of some of the hypotheses in Bhattacharya and Lins Omnibus Central Limit Theorem for Frechet means. We obtain our CLT assuming certain s