ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum conductance of MoS_2 armchair nanoribbons

83   0   0.0 ( 0 )
 نشر من قبل Ismaeil Abdolhosseini Sarsari
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Molybdenum disulfide (MoS2) is layered transition-metal dichalcogenide (TMDC), which in its monolayer form, has the direct bandgap of 1.8 eV. We investigated the effect of width and strain on quantum transport for MoS2 armchair nanoribbons. That indicates MoS2 armchair nanoribbons are a good candidate for transistors even with strain.



قيم البحث

اقرأ أيضاً

316 - Lian Sun , Qunxiang Li , Hao Ren 2007
We report a first-principles study on electronic structures of the deformed armchair graphene nanoribbons (AGNRs). The variation of the energy gap of AGNRs as a function of uniaxial strain displays a zigzag pattern, which indicates that the energy ga ps of AGNRs can be effectively tuned. The spatial distributions of two occupied and two empty subbands close to the Fermi level are swapped under different strains. The tunable width of energy gaps becomes narrower as increasing the width of AGNRs. Our simulations with tight binding approximation, including the nearest neighbor hopping integrals between $pi$- orbitals of carbon atoms, reproduce these results by first-principles calculations. One simple empirical formula is obtained to describe the scaling behavior of the maximal value of energy gap as a function of the width of AGNRs.
132 - Hao Ren , Qunxiang Li , Haibin Su 2007
In this paper, we apply the first-principle theory to explore how the electronic structures of armchair graphene nanoribbons (AGNRs) are affected by chemical modifications. The edge addends include H, F, N, NH$_{2}$, and NO$_{2}$. Our theoretical res ults show that the energy gaps are highly tunable by controlling the widths of AGNRs and addends. The most interesting finding is that N-passivated AGNRs with various widths are metallic due to the unique electronic features of N-N bonds. This property change of AGNRs (from semiconducting to metallic) is important in developing graphene-based devices.
We extensively characterize the electronic structure of ultra-narrow graphene nanoribbons (GNRs) with armchair edges and zig-zag termini that have 5 carbon atoms across their width (5-AGNRs), as synthesised on Au(111). Scanning tunnelling spectroscop y measurements on the ribbons, recorded on both the metallic substrate and a decoupling NaCl layer, show well-defined dispersive bands and in-gap states. In combination with theoretical calculations, we show how these in-gap states are topological in nature and localised at the zig-zag termini of the nanoribbons. Besides rationalising the driving force behind the topological class selection of 5-AGNRs, we also uncover the length-dependent behaviour of these end states which transition from singly occupied spin-split states to a closed-shell form as the ribbons become shorter. Finally, we demonstrate the magnetic character of the end states via transport experiments in a model two-terminal device structure in which the ribbons are suspended between the scanning probe and the substrate that both act as leads.
285 - A. Dasgupta , S. Bera , F. Evers 2011
Quantum size effects in armchair graphene nano-ribbons (AGNR) with hydrogen termination are investigated via density functional theory (DFT) in Kohn-Sham formulation. Selection rules will be formulated, that allow to extract (approximately) the elect ronic structure of the AGNR bands starting from the four graphene dispersion sheets. In analogy with the case of carbon nanotubes, a threefold periodicity of the excitation gap with the ribbon width (N, number of carbon atoms per carbon slice) is predicted that is confirmed by ab initio results. While traditionally such a periodicity would be observed in electronic response experiments, the DFT analysis presented here shows that it can also be seen in the ribbon geometry: the length of a ribbon with L slices approaches the limiting value for a very large width 1 << N (keeping the aspect ratio small N << L) with 1/N-oscillations that display the electronic selection rules. The oscillation amplitude is so strong, that the asymptotic behavior is non-monotonous, i.e., wider ribbons exhibit a stronger elongation than more narrow ones.
95 - S. Krompiewski 2002
Effect of contact interfaces, between metallic single-wall carbon nanotubes (SWCNT) and external electrodes made also of nanotubes, on the electrical conductance is studied. A tight-binding model with both diagonal and off-diagonal disorder, a recurs ive Green function technique as well as the Landauer formalism are used. The studies are carried out within the coherent transport regime and are focused on: (i) evolution from conductance quantization to resonant tunneling, (ii) SWCNTs length effects and (iii) magnetoresistance. It is shown that the so-called on-resonance devices, i.e. nanotubes having a conductance peak at the Fermi energy, occur with a period of 3 carbon inter-ring spacings. Additionally, the present approach provides an insight into magnetoresistance dependence of SWCNTs on conditions at the contact interface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا