ترغب بنشر مسار تعليمي؟ اضغط هنا

Edge Effects on the Electronic Structures of Chemically Modified Armchair Graphene Nanoribbons

120   0   0.0 ( 0 )
 نشر من قبل Li Qunxiang
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we apply the first-principle theory to explore how the electronic structures of armchair graphene nanoribbons (AGNRs) are affected by chemical modifications. The edge addends include H, F, N, NH$_{2}$, and NO$_{2}$. Our theoretical results show that the energy gaps are highly tunable by controlling the widths of AGNRs and addends. The most interesting finding is that N-passivated AGNRs with various widths are metallic due to the unique electronic features of N-N bonds. This property change of AGNRs (from semiconducting to metallic) is important in developing graphene-based devices.



قيم البحث

اقرأ أيضاً

Using density functional theory calculations, we have studied the edge-functionalization of armchair graphene nanoribbons (AGNRs) with pentagonal-hexagonal edge structures. While the AGNRs with pentagonal-hexagonal edge structures (labeled (5,6)-AGNR s) are metallic, the edge-functionalized (5,6)-AGNRs with substitutional atoms opens a band gap. We find that the band structures of edge-functionalized (5,6)-N-AGNRs by substitution resemble those of defect-free (N-1)-AGNR at the {Gamma} point, whereas those at the X point show the original ones of the defect-free N-AGNR. The overall electronic structures of edge-functionalized (5,6)-AGNRs depend on the number of electrons, supplied by substitutional atoms, at the edges of functionalized (5,6)-AGNRs.
316 - Lian Sun , Qunxiang Li , Hao Ren 2007
We report a first-principles study on electronic structures of the deformed armchair graphene nanoribbons (AGNRs). The variation of the energy gap of AGNRs as a function of uniaxial strain displays a zigzag pattern, which indicates that the energy ga ps of AGNRs can be effectively tuned. The spatial distributions of two occupied and two empty subbands close to the Fermi level are swapped under different strains. The tunable width of energy gaps becomes narrower as increasing the width of AGNRs. Our simulations with tight binding approximation, including the nearest neighbor hopping integrals between $pi$- orbitals of carbon atoms, reproduce these results by first-principles calculations. One simple empirical formula is obtained to describe the scaling behavior of the maximal value of energy gap as a function of the width of AGNRs.
It is now possible to produce graphene nanoribbons (GNRs) with atomically defined widths. GNRs offer many opportunities for electronic devices and composites, if it is possible to establish the link between edge structure and functionalisation, and r esultant GNR properties. Switching hydrogen edge termination to larger more complex functional groups such as hydroxyls or thiols induces strain at the ribbon edge. However we show that this strain is then relieved via the formation of static out-of-plane ripples. The resultant ribbons have a significantly reduced Youngs Modulus which varies as a function of ribbon width, modified band gaps, as well as heterogeneous chemical reactivity along the edge. Rather than being the exception, such static edge ripples are likely on the majority of functionalized graphene ribbon edges.
262 - Lian Sun , Yafei Li , Zhenyu Li 2008
Electronic structures of SiC nanoribbons have been studied by spin-polarized density functional calculations. The armchair nanoribbons are nonmagnetic semiconductor, while the zigzag nanoribbons are magnetic metal. The spin polarization in zigzag SiC nanoribbons is originated from the unpaired electrons localized on the ribbon edges. Interestingly, the zigzag nanoribbons narrower than $sim$4 nm present half-metallic behavior. Without the aid of external field or chemical modification, the metal-free half-metallicity predicted for narrow SiC zigzag nanoribbons opens a facile way for nanomaterial spintronics applications.
We extensively characterize the electronic structure of ultra-narrow graphene nanoribbons (GNRs) with armchair edges and zig-zag termini that have 5 carbon atoms across their width (5-AGNRs), as synthesised on Au(111). Scanning tunnelling spectroscop y measurements on the ribbons, recorded on both the metallic substrate and a decoupling NaCl layer, show well-defined dispersive bands and in-gap states. In combination with theoretical calculations, we show how these in-gap states are topological in nature and localised at the zig-zag termini of the nanoribbons. Besides rationalising the driving force behind the topological class selection of 5-AGNRs, we also uncover the length-dependent behaviour of these end states which transition from singly occupied spin-split states to a closed-shell form as the ribbons become shorter. Finally, we demonstrate the magnetic character of the end states via transport experiments in a model two-terminal device structure in which the ribbons are suspended between the scanning probe and the substrate that both act as leads.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا