ترغب بنشر مسار تعليمي؟ اضغط هنا

Situation Recognition with Graph Neural Networks

108   0   0.0 ( 0 )
 نشر من قبل Makarand Tapaswi
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We address the problem of recognizing situations in images. Given an image, the task is to predict the most salient verb (action), and fill its semantic roles such as who is performing the action, what is the source and target of the action, etc. Different verbs have different roles (e.g. attacking has weapon), and each role can take on many possible values (nouns). We propose a model based on Graph Neural Networks that allows us to efficiently capture joint dependencies between roles using neural networks defined on a graph. Experiments with different graph connectivities show that our approach that propagates information between roles significantly outperforms existing work, as well as multiple baselines. We obtain roughly 3-5% improvement over previous work in predicting the full situation. We also provide a thorough qualitative analysis of our model and influence of different roles in the verbs.



قيم البحث

اقرأ أيضاً

Knowledge Distillation (KD) aims at transferring knowledge from a larger well-optimized teacher network to a smaller learnable student network.Existing KD methods have mainly considered two types of knowledge, namely the individual knowledge and the relational knowledge. However, these two types of knowledge are usually modeled independently while the inherent correlations between them are largely ignored. It is critical for sufficient student network learning to integrate both individual knowledge and relational knowledge while reserving their inherent correlation. In this paper, we propose to distill the novel holistic knowledge based on an attributed graph constructed among instances. The holistic knowledge is represented as a unified graph-based embedding by aggregating individual knowledge from relational neighborhood samples with graph neural networks, the student network is learned by distilling the holistic knowledge in a contrastive manner. Extensive experiments and ablation studies are conducted on benchmark datasets, the results demonstrate the effectiveness of the proposed method. The code has been published in https://github.com/wyc-ruiker/HKD
265 - Zhenyue Qin , Yang Liu , Pan Ji 2021
Skeleton sequences are lightweight and compact, thus are ideal candidates for action recognition on edge devices. Recent skeleton-based action recognition methods extract features from 3D joint coordinates as spatial-temporal cues, using these repres entations in a graph neural network for feature fusion to boost recognition performance. The use of first- and second-order features, ie{} joint and bone representations, has led to high accuracy. Nonetheless, many models are still confused by actions that have similar motion trajectories. To address these issues, we propose fusing third-order features in the form of angular encoding into modern architectures to robustly capture the relationships between joints and body parts. This simple fusion with popular spatial-temporal graph neural networks achieves new state-of-the-art accuracy in two large benchmarks, including NTU60 and NTU120, while employing fewer parameters and reduced run time. Our source code is publicly available at: https://github.com/ZhenyueQin/Angular-Skeleton-Encoding.
We introduce SketchGNN, a convolutional graph neural network for semantic segmentation and labeling of freehand vector sketches. We treat an input stroke-based sketch as a graph, with nodes representing the sampled points along input strokes and edge s encoding the stroke structure information. To predict the per-node labels, our SketchGNN uses graph convolution and a static-dynamic branching network architecture to extract the features at three levels, i.e., point-level, stroke-level, and sketch-level. SketchGNN significantly improves the accuracy of the state-of-the-art methods for semantic sketch segmentation (by 11.2% in the pixel-based metric and 18.2% in the component-based metric over a large-scale challenging SPG dataset) and has magnitudes fewer parameters than both image-based and sequence-based methods.
70 - Jindong Gu , Volker Tresp 2020
Capsule Networks, as alternatives to Convolutional Neural Networks, have been proposed to recognize objects from images. The current literature demonstrates many advantages of CapsNets over CNNs. However, how to create explanations for individual cla ssifications of CapsNets has not been well explored. The widely used saliency methods are mainly proposed for explaining CNN-based classifications; they create saliency map explanations by combining activation values and the corresponding gradients, e.g., Grad-CAM. These saliency methods require a specific architecture of the underlying classifiers and cannot be trivially applied to CapsNets due to the iterative routing mechanism therein. To overcome the lack of interpretability, we can either propose new post-hoc interpretation methods for CapsNets or modifying the model to have build-in explanations. In this work, we explore the latter. Specifically, we propose interpretable Graph Capsule Networks (GraCapsNets), where we replace the routing part with a multi-head attention-based Graph Pooling approach. In the proposed model, individual classification explanations can be created effectively and efficiently. Our model also demonstrates some unexpected benefits, even though it replaces the fundamental part of CapsNets. Our GraCapsNets achieve better classification performance with fewer parameters and better adversarial robustness, when compared to CapsNets. Besides, GraCapsNets also keep other advantages of CapsNets, namely, disentangled representations and affine transformation robustness.
103 - Maosen Li , Siheng Chen , Xu Chen 2019
3D skeleton-based action recognition and motion prediction are two essential problems of human activity understanding. In many previous works: 1) they studied two tasks separately, neglecting internal correlations; 2) they did not capture sufficient relations inside the body. To address these issues, we propose a symbiotic model to handle two tasks jointly; and we propose two scales of graphs to explicitly capture relations among body-joints and body-parts. Together, we propose symbiotic graph neural networks, which contain a backbone, an action-recognition head, and a motion-prediction head. Two heads are trained jointly and enhance each other. For the backbone, we propose multi-branch multi-scale graph convolution networks to extract spatial and temporal features. The multi-scale graph convolution networks are based on joint-scale and part-scale graphs. The joint-scale graphs contain actional graphs, capturing action-based relations, and structural graphs, capturing physical constraints. The part-scale graphs integrate body-joints to form specific parts, representing high-level relations. Moreover, dual bone-based graphs and networks are proposed to learn complementary features. We conduct extensive experiments for skeleton-based action recognition and motion prediction with four datasets, NTU-RGB+D, Kinetics, Human3.6M, and CMU Mocap. Experiments show that our symbiotic graph neural networks achieve better performances on both tasks compared to the state-of-the-art methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا