ﻻ يوجد ملخص باللغة العربية
We study phase transitions in a two dimensional weakly interacting Bose gas in a random potential at finite temperatures. We identify superfluid, normal fluid, and insulator phases and construct the phase diagram. At T=0 one has a tricritical point where the three phases coexist. The truncation of the energy distribution at the trap barrier, which is a generic phenomenon in cold atom systems, limits the growth of the localization length and in contrast to the thermodynamic limit the insulator phase is present at any temperature.
It is commonly accepted that there are no phase transitions in one-dimensional (1D) systems at a finite temperature, because long-range correlations are destroyed by thermal fluctuations. Here we demonstrate that the 1D gas of short-range interacting
We show that in the regime when strong disorder is more relevant than field quantization the superfluid--to--Bose-glass criticality of one-dimensional bosons is preceded by the prolonged logarithmically slow classical-field renormalization flow of th
We consider the many-body localization-delocalization transition for strongly interacting one- dimensional disordered bosons and construct the full picture of finite temperature behavior of this system. This picture shows two insulator-fluid transiti
We demonstrate that many-body localization of two-dimensional weakly interacting bosons in disorder remains stable in the thermodynamic limit at sufficiently low temperatures. Highly energetic particles destroy the localized state only above a critic
We report on results of Quantum Monte Carlo simulations for bosons in a two dimensional quasi-periodic optical lattice. We study the ground state phase diagram at unity filling and confirm the existence of three phases: superfluid, Mott insulator, an