ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite temperature phase transition for disordered weakly interacting bosons in one dimension

149   0   0.0 ( 0 )
 نشر من قبل Igor Aleiner
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is commonly accepted that there are no phase transitions in one-dimensional (1D) systems at a finite temperature, because long-range correlations are destroyed by thermal fluctuations. Here we demonstrate that the 1D gas of short-range interacting bosons in the presence of disorder can undergo a finite temperature phase transition between two distinct states: fluid and insulator. None of these states has long-range spatial correlations, but this is a true albeit non-conventional phase transition because transport properties are singular at the transition point. In the fluid phase the mass transport is possible, whereas in the insulator phase it is completely blocked even at finite temperatures. We thus reveal how the interaction between disordered bosons influences their Anderson localization. This key question, first raised for electrons in solids, is now crucial for the studies of atomic bosons where recent experiments have demonstrated Anderson localization in expanding very dilute quasi-1D clouds.



قيم البحث

اقرأ أيضاً

We study phase transitions in a two dimensional weakly interacting Bose gas in a random potential at finite temperatures. We identify superfluid, normal fluid, and insulator phases and construct the phase diagram. At T=0 one has a tricritical point w here the three phases coexist. The truncation of the energy distribution at the trap barrier, which is a generic phenomenon in cold atom systems, limits the growth of the localization length and in contrast to the thermodynamic limit the insulator phase is present at any temperature.
We consider the many-body localization-delocalization transition for strongly interacting one- dimensional disordered bosons and construct the full picture of finite temperature behavior of this system. This picture shows two insulator-fluid transiti ons at any finite temperature when varying the interaction strength. At weak interactions an increase in the interaction strength leads to insulator->fluid transition, and for large interactions one has a reentrance to the insulator regime.
We show that in the regime when strong disorder is more relevant than field quantization the superfluid--to--Bose-glass criticality of one-dimensional bosons is preceded by the prolonged logarithmically slow classical-field renormalization flow of th e superfluid stiffness at mesoscopic scales. With the system compressibility remaining constant, the quantum nature of the system manifests itself only in the renormalization of dilute weak links. On the insulating side, the flow ultimately reaches a value of the Luttinger parameter at which the instanton--anti-instanton pairs start to proliferate, in accordance with the universal quantum scenario. This happens first at astronomic system sizes because of the suppressed instanton fugacity. We illustrate our result by first-principles simulations.
We study the collective excitations, i.e., the Goldstone (phase) mode and the Higgs (amplitude) mode, near the superfluid--Mott glass quantum phase transition in a two-dimensional system of disordered bosons. Using Monte Carlo simulations as well as an inhomogeneous quantum mean-field theory with Gaussian fluctuations, we show that the Higgs mode is strongly localized for all energies, leading to a noncritical scalar response. In contrast, the lowest-energy Goldstone mode undergoes a striking delocalization transition as the system enters the superfluid phase. We discuss the generality of these findings and experimental consequences, and we point out potential relations to many-body localization.
247 - N. Lemke , I. A. Campbell 1999
We show using extensive simulation results and physical arguments that an Ising system on a two dimensional square lattice, having interactions of random sign between first neighbors and ferromagnetic interactions between second neighbors, presents a phase transition at a non-zero temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا