ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum efficiency modeling for a thick back-illuminated astronomical CCD

54   0   0.0 ( 0 )
 نشر من قبل Donald Groom
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quantum efficiency and reflectivity of thick, back-illuminated CCDs being fabricated at LBNL for astronomical applications are modeled and compared with experiment. The treatment differs from standard thin-film optics in that (a) absorption is permitted in any film, (b) the 200--500~$mu$m thick silicon substrate is considered as a thin film in order to observe the fringing behavior at long wavelengths, and (c) by using approximate boundary conditions, absorption in the surface films is separated from absorption in the substrate. For the quantum efficiency measurements the CCDs are normally operated as CCDs, usually at $T = -140^circ$C, and at higher temperatures as photodiodes. They are mounted on mechanical substrates. Reflectivity is measured on air-backed wafer samples at room temperature. The agreement between model expectation and quantum efficiency measurement is in general satisfactory.



قيم البحث

اقرأ أيضاً

We report a decreased surface wettability when polymer films on a glass substrate are treated by ultra-fast laser pulses in a back-illumination geometry. We propose that back-illumination through the substrate confines chemical changes beneath the su rface of polymer films, leaving the surface blistered but chemically intact. To confirm this hypothesis, we measure the phase contrast of the polymer when observed with a focused ion beam. We observe a void at the polymer-quartz interface that results from the expansion of an ultrafast laser-induced plasma. A modified polymer layer surrounds the void, but otherwise the film seems unmodified. We also use X-ray photoelectron spectroscopy to confirm that there is no chemical change to the surface. When patterned with partially overlapping blisters, our polymer surface shows increased hydrophobicity. The increased hydrophobicity of back-illuminated surfaces can only result from the morphological change. This contrasts with the combined chemical and morphological changes of the polymer surface caused by a front-illumination geometry.
Low noise CCDs fully-depleted up to 675 micrometers have been identified as a unique tool for Dark Matter searches and low energy neutrino physics. The charge collection efficiency (CCE) for these detectors is a critical parameter for the performance of future experiments. We present here a new technique to characterize CCE in back-illuminated CCDs based on soft X-rays. This technique is used to characterize two different detector designs. The results demonstrate the importance of the backside processing for detection near threshold, showing that a recombination layer of a few microns significantly distorts the low energy spectrum. The studies demonstrate that the region of partial charge collection can be reduced to less than 1 micrometer thickness with adequate backside processing.
82 - E. Miyata , M. Miki , H. Tsunemi 2002
A charge-coupled device (CCD) is a standard imager in optical region in which the image quality is limited by its pixel size. CCDs also function in X-ray region but with substantial differences in performance. An optical photon generates only one ele ctron while an X-ray photon generates many electrons at a time. We developed a method to precisely determine the X-ray point of interaction with subpixel resolution. In particular, we found that a back-illuminated CCD efficiently functions as a fine imager. We present here the validity of our method through an actual imaging experiment.
89 - E. Miyata , M. Miki , J. Hiraga 2002
We have employed a mesh experiment for back-illuminated (BI) CCDs. BI CCDs possess the same structure to those of FI CCDs. Since X-ray photons enter from the back surface of the CCD, a primary charge cloud is formed far from the electrodes. The prima ry charge cloud expands through diffusion process until it reaches the potential well that is just below the electrodes. Therefore, the diffusion time for the charge cloud produced is longer than that in the FI CCD, resulting a larger charge cloud shape expected. The mesh experiment enables us to specify the X-ray point of interaction with a subpixel resolution. We then have measured a charge cloud shape produced in the BI CCD. We found that there are two components of the charge cloud shape having different size: a narrow component and a broad component. The size of the narrow component is $2.8-5.7 mu$m in unit of a standard deviation and strongly depends on the attenuation length in Si of incident X-rays. The shorter the attenuation length of X-rays is, the larger the charge cloud becomes. This result is qualitatively consistent with a diffusion model inside the CCD. On the other hand, the size of the broad component is roughly constant of $simeq 13 mu$m and does not depend on X-ray energies. Judging from the design value of the CCD and the fraction of each component, we conclude that the narrow component is originated in the depletion region whereas the broad component is in the field-free region.
Integrated nonlinear photonic circuits received rapid development in recent years, providing all-optical functionalities enabled by cavity-enhanced photon-photon interaction for classical and quantum applications. A high-efficiency fiber-to-chip inte rface is key to the use of these integrated photonic circuits for quantum information tasks, as photon loss is a major source that weakens quantum protocols. Here, overcoming material and fabrication limitation of thin-film aluminum nitride by adopting a stepwise waveguiding scheme, we demonstrate low-loss adiabatic fiber-optic couplers in aluminum nitride films with a substantial thickness (600 nm) for optimized nonlinear photon interaction. For telecom (1550 nm) and near-visible (780 nm) transverse magnetic-polarized light, the measured insertion loss of the fiber-optic coupler is -0.97 dB and -2.6 dB, respectively. Our results will facilitate the use of aluminum nitride integrated photonic circuits as efficient quantum resources for generation of entangled photons and squeezed light on microchips.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا