ﻻ يوجد ملخص باللغة العربية
A charge-coupled device (CCD) is a standard imager in optical region in which the image quality is limited by its pixel size. CCDs also function in X-ray region but with substantial differences in performance. An optical photon generates only one electron while an X-ray photon generates many electrons at a time. We developed a method to precisely determine the X-ray point of interaction with subpixel resolution. In particular, we found that a back-illuminated CCD efficiently functions as a fine imager. We present here the validity of our method through an actual imaging experiment.
A simple X-ray imaging system using off-the-shelf electronics and simple reconstruction algorithms aiming a spatial resolution of 1.7 mm ($sim 3,%$ of the detector length) is described in this work. For this, two 100 cm$^2$ Gas Electron Multiplier (G
The quantum efficiency and reflectivity of thick, back-illuminated CCDs being fabricated at LBNL for astronomical applications are modeled and compared with experiment. The treatment differs from standard thin-film optics in that (a) absorption is pe
We report the radiation hardness of a p-channel CCD developed for the X-ray CCD camera onboard the XRISM satellite. This CCD has basically the same characteristics as the one used in the previous Hitomi satellite, but newly employs a notch structure
Frequency combs have triggered an impressive evolution of optical metrology across diverse regions of the electromagnetic spectrum, from the ultraviolet to the terahertz frequencies. An unexplored territory, however, remains in the region of vibratio
The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright stars with Ic<13. TESS has been selected by NASA for launch in 2018 as an Astrophysics Explorer mission, and is expected to discover a thousand or more planets