ﻻ يوجد ملخص باللغة العربية
In this paper we study the stochastic differential equations driven by $G$-Brownian motion ($G$-SDEs for short). We extend the notion of conditional $G$-expectation from deterministic time to the more general optional time situation. Then, via this conditional expectation, we develop the strong Markov property for $G$-SDEs. In particular, we obtain the strong Markov property for $G$-Brownian motion. Some applications including the reflection principle for $G$-Brownian motion are also provided.
In this paper, we investigate suffcient and necessary conditions for the comparison theorem of neutral stochastic functional differential equations driven by G-Brownian motion (G-NSFDE). Moreover, the results extend the ones in the linear expectation case [1] and nonlinear expectation framework [8].
In this paper, we study the reflected backward stochastic differential equations driven by G-Brownian motion with two reflecting obstacles, which means that the solution lies between two prescribed processes. A new kind of approximate Skorohod condit
We study the Crank-Nicolson scheme for stochastic differential equations (SDEs) driven by multidimensional fractional Brownian motion $(B^{1}, dots, B^{m})$ with Hurst parameter $H in (frac 12,1)$. It is well-known that for ordinary differential equa
In this paper we develop sensitivity analyses w.r.t. the long-range/memory noise parameter for solutions to stochastic differential equations and the probability distributions of their first passage times at given thresholds. Here we consider the cas
This article is concerned with stochastic differential equations driven by a $d$ dimensional fractional Brownian motion with Hurst parameter $H>1/4$, understood in the rough paths sense. Whenever the coefficients of the equation satisfy a uniform hyp