ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics on networks. Case of Heterogeneous Opinion Status Model

391   0   0.0 ( 0 )
 نشر من قبل Liubov Tupikina
 تاريخ النشر 2017
والبحث باللغة English
 تأليف Liubov Tupikina




اسأل ChatGPT حول البحث

Here we developed a new conceptual, stochastic Heterogeneous Opinion-Status model (HOpS model), which is adaptive network model. The HOpS model admits to identify the main attributes of dynamics on networks and to study analytically the relation between topological network properties and processes taking place on a network. Another key point of the HOpS model is the possibility to study network dynamics via the novel parameter of heterogeneity. We show that not only clear topological network properties, such as node degree, but also, the nodes status distribution (the factor of network heterogeneity) play an important role in so-called opinion spreading and information diffusion on a network. This model can be potentially used for studying the co-evolution of globally aggregated or averaged key observables of the earth system. These include natural variables such as atmospheric, oceanic and land carbon stocks, as well as socio-economic quantities such as global human population, economic production or wellbeing.



قيم البحث

اقرأ أيضاً

226 - F. W. S. Lima 2013
We study a nonequilibrium model with up-down symmetry and a noise parameter $q$ known as majority-vote model of M.J. Oliveira $1992$ on opinion-dependent network or Stauffer-Hohnisch-Pittnauer networks. By Monte Carlo simulations and finite-size scal ing relations the critical exponents $beta/ u$, $gamma/ u$, and $1/ u$ and points $q_{c}$ and $U^*$ are obtained. After extensive simulations, we obtain $beta/ u=0.230(3)$, $gamma/ u=0.535(2)$, and $1/ u=0.475(8)$. The calculated values of the critical noise parameter and Binder cumulant are $q_{c}=0.166(3)$ and $U^*=0.288(3)$. Within the error bars, the exponents obey the relation $2beta/ u+gamma/ u=1$ and the results presented here demonstrate that the majority-vote model belongs to a different universality class than the equilibrium Ising model on Stauffer-Hohnisch-Pittnauer networks, but to the same class as majority-vote models on some other networks.
In this work, we investigate a heterogeneous population in the modified Hegselmann-Krause opinion model on complex networks. We introduce the Shannon information entropy about all relative opinion clusters to characterize the cluster profile in the f inal configuration. Independent of network structures, there exists the optimal stubbornness of one subpopulation for the largest number of clusters and the highest entropy. Besides, there is the optimal bounded confidence (or subpopulation ratio) of one subpopulation for the smallest number of clusters and the lowest entropy. However, network structures affect cluster profiles indeed. A large average degree favors consensus for making different networks more similar with complete graphs. The network size has limited impact on cluster profiles of heterogeneous populations on scale-free networks but has significant effects upon those on small-world networks.
246 - F. W. S. Lima 2012
Within the context of agent-based Monte-Carlo simulations, we study the well-known majority-vote model (MVM) with noise applied to tax evasion on Stauffer-Hohnisch-Pittnauer (SHP) networks. To control the fluctuations for tax evasion in the economics model proposed by Zaklan, MVM is applied in the neighborhood of the critical noise $q_{c}$ to evolve the Zaklan model. The Zaklan model had been studied recently using the equilibrium Ising model. Here we show that the Zaklan model is robust because this can be studied besides using equilibrium dynamics of Ising model also through the nonequilibrium MVM and on various topologies giving the same behavior regardless of dynamic or topology used here.
In this paper we apply techniques of complex network analysis to data sources representing public funding programs and discuss the importance of the considered indicators for program evaluation. Starting from the Open Data repository of the 2007-2013 Italian Program Programma Operativo Nazionale Ricerca e Competitivit`a (PON R&C), we build a set of data models and perform network analysis over them. We discuss the obtained experimental results outlining interesting new perspectives that emerge from the application of the proposed methods to the socio-economical evaluation of funded programs.
102 - Dan Lu 2016
Epidemic propagation on complex networks has been widely investigated, mostly with invariant parameters. However, the process of epidemic propagation is not always constant. Epidemics can be affected by various perturbations, and may bounce back to i ts original state, which is considered resilient. Here, we study the resilience of epidemics on networks, by introducing a different infection rate ${lambda_{2}}$ during SIS (susceptible-infected-susceptible) epidemic propagation to model perturbations (control state), whereas the infection rate is ${lambda_{1}}$ in the rest of time. Through simulations and theoretical analysis, we find that even for ${lambda_{2}<lambda_{c}}$, epidemics eventually could bounce back if control duration is below a threshold. This critical control time for epidemic resilience, i.e., ${cd_{max}}$ can be predicted by the diameter (${d}$) of the underlying network, with the quantitative relation ${cd_{max}sim d^{alpha}}$. Our findings can help to design a better mitigation strategy for epidemics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا