ﻻ يوجد ملخص باللغة العربية
A formula for the ionization rate in extremely intense electromagnetic field is proposed and used for numerical study of QED (quantum-electrodynamical) cascades in noble gases in the field of two counter-propagating laser pulses. It is shown that the number of the electron-positron pairs produced in the cascade increases with the atomic number of the gas where the gas density is taken to be reversely proportional to the atomic number. While the most electrons produced in the laser pulse front are expelled by the ponderomotive force from region occupied by the strong laser field there is a small portion of the electrons staying in the laser field for a long time until the instance when the laser field is strong enough for cascading. This mechanism is relevant for all gases. For high-$Z$ gases there is an additional mechanism associated with the ionization of inner shells at the the instance when the laser field is strong enough for cascading. The role of both mechanisms for cascade initiation is revealed.
The QED cascade induced by the two counter-propagating lasers is studied. It is demonstrated that the probability of a seed-photon to create a pair is much larger than that of a seed-electron. By analyzing the dynamic characteristics of the electron
Absorption covers the physical processes which convert intense photon flux into energetic particles when a high-power laser illuminates optically-thick matter. It underpins important petawatt-scale applications today, e.g., medical-quality proton bea
Development of the self-sustained quantum-electrodynamical (QED) cascade in a single strong laser pulse is studied analytically and numerically. The hydrodynamical approach is used to construct the analytical model of the cascade evolution, which inc
Single-shot laser-induced damage threshold (LIDT) measurements of multi-type free-standing ultrathin foils were performed in vacuum environment for 800 nm laser pulses with durations {tau} ranging from 50 fs to 200 ps. Results show that the laser dam
Direct investigation of ion-induced dynamics in matter on picosecond (ps, 10-12 s) timescales has been precluded to date by the relatively long nanosecond (ns, 10-9 s) scale ion pulses typically provided by radiofrequency accelerators1. By contrast,