ترغب بنشر مسار تعليمي؟ اضغط هنا

QED cascade induced by high energy $gamma$ photon in strong laser field

215   0   0.0 ( 0 )
 نشر من قبل Bai-Song Xie
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The QED cascade induced by the two counter-propagating lasers is studied. It is demonstrated that the probability of a seed-photon to create a pair is much larger than that of a seed-electron. By analyzing the dynamic characteristics of the electron and positron created by the seed-photon, it is found that the created particles are more probable to emit photons than the seed-electron. With these result, further more, we also demonstrate that the QED cascade can be easier to be triggered by the seed-photon than by the seed-electron with the same incident energy and the same laser.



قيم البحث

اقرأ أيضاً

A formula for the ionization rate in extremely intense electromagnetic field is proposed and used for numerical study of QED (quantum-electrodynamical) cascades in noble gases in the field of two counter-propagating laser pulses. It is shown that the number of the electron-positron pairs produced in the cascade increases with the atomic number of the gas where the gas density is taken to be reversely proportional to the atomic number. While the most electrons produced in the laser pulse front are expelled by the ponderomotive force from region occupied by the strong laser field there is a small portion of the electrons staying in the laser field for a long time until the instance when the laser field is strong enough for cascading. This mechanism is relevant for all gases. For high-$Z$ gases there is an additional mechanism associated with the ionization of inner shells at the the instance when the laser field is strong enough for cascading. The role of both mechanisms for cascade initiation is revealed.
Development of the self-sustained quantum-electrodynamical (QED) cascade in a single strong laser pulse is studied analytically and numerically. The hydrodynamical approach is used to construct the analytical model of the cascade evolution, which inc ludes the key features of the cascade observed in 3D QED particle-in-cell (QED-PIC) simulations such as the magnetic field predominance in the cascade plasma and laser energy absorption. The equations of the model are derived in the closed form and are solved numerically. Direct comparison between the solutions of the model equations and 3D QED-PIC simulations shows that our model is able to describe the complex nonlinear process of the cascade development qualitatively well. The various regimes of the interaction based on the intensity of the laser pulse are revealed in both the solutions of the model equations and the results of the QED-PIC simulations.
The recoil associated with photon emission is key to the dynamics of ultrarelativistic electrons in strong electromagnetic fields, as are found in high-intensity laser-matter interactions and astrophysical environments such as neutron star magnetosph eres. When the energy of the photon becomes comparable to that of the electron, it is necessary to use quantum electrodynamics (QED) to describe the dynamics accurately. However, computing the appropriate scattering matrix element from strong-field QED is not generally possible due to multiparticle effects and the complex structure of the electromagnetic fields. Therefore these interactions are treated semiclassically, coupling probabilistic emission events to classical electrodynamics using rates calculated in the locally constant field approximation. Here we provide comprehensive benchmarking of this approach against the exact QED calculation for nonlinear Compton scattering of electrons in an intense laser pulse. We find agreement at the percentage level between the photon spectra, as well as between the models predictions of absorption from the background field, for normalized amplitudes $a_0 > 5$. We discuss possible routes towards improved numerical methods and the implications of our results for the study of QED cascades.
Deep understanding of photon polarization impact on pair production is essential for the efficient creation of laser driven polarized positron beams, and demands a complete description of polarization effects in strong-field QED processes. We investi gate, employing fully polarization resolved Monte Carlo simulations, the correlated photon and electron (positron) polarization effects in multiphoton Breit-Wheeler pair production process during the interaction of an ultrarelativistic electron beam with a counterpropagating elliptically polarized laser pulse. We showed that the polarization of e^-e^+ pairs is degraded by 35%, when the polarization of the intermediate photon is resolved, accompanied with an approximately 13% decrease of the pair yield. Moreover, the polarization direction of energetic positrons in small angle region is reversed, which originates from the pair production of hard photons with polarization parallel with electric field.
An ionization-induced plasma grating can be formed by spatially selective ionization of gases by the interference of two intersecting ultra-short laser pulses. The density modulation of a plasma grating can approach unity since the plasma is produced only where the two pulses constructively interfere and ionization does not occur in destructive interference regions. Such a large density modulation leads to efficient Thomson scattering of a second ultra-short probe pulse once the Bragg condition is satisfied. By measuring the scattering efficiency, it is possible to determine the absolute electron density in the plasma grating and thereby deduce the ionization degree for a given neutral gas density. In this paper, we demonstrate the usefulness of this concept by showing two applications: ionization degree measurement of strong-field ionization of atoms and molecules and characterization of extremely low-density gas jets. The former application is of particular interest for ionization physics studies in dense gases where the collision of the ionized electron with neighboring neutrals may become important-sometimes referred to as many-body ionization, and the latter is useful for plasma-based acceleration that requires extremely low-density plasmas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا