ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of cosmic-ray reconstruction efficiencies in the MicroBooNE LArTPC using a small external cosmic-ray counter

89   0   0.0 ( 0 )
 نشر من قبل Stefano Roberto Soleti
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. We present a method of using an external 0.5 m (L) x 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersecting different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to be $epsilon_{mathrm{data}}=(97.1pm0.1~(mathrm{stat}) pm 1.4~(mathrm{sys}))%$, in good agreement with the Monte Carlo reconstruction efficiency $epsilon_{mathrm{MC}} = (97.4pm0.1)%$. This analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag $approx80%$ of the cosmic rays passing through the MicroBooNE detector.



قيم البحث

اقرأ أيضاً

The MicroBooNE liquid argon time projection chamber (LArTPC) has been taking data at Fermilab since 2015 collecting, in addition to neutrino beam, cosmic-ray muons. Results are presented on the reconstruction of Michel electrons produced by the decay at rest of cosmic-ray muons. Michel electrons are abundantly produced in the TPC, and given their well known energy spectrum can be used to study MicroBooNEs detector response to low-energy electrons (electrons with energies up to ~50 MeV). We describe the fully-automated algorithm developed to reconstruct Michel electrons, with which a sample of ~14,000 Michel electron candidates is obtained. Most of this article is dedicated to studying the impact of radiative photons produced by Michel electrons on the accuracy and resolution of their energy measurement. In this energy range, ionization and bremsstrahlung photon production contribute similarly to electron energy loss in argon, leading to a complex electron topology in the TPC. By profiling the performance of the reconstruction algorithm on simulation we show that the ability to identify and include energy deposited by radiative photons leads to a significant improvement in the energy measurement of low-energy electrons. The fractional energy resolution we measure improves from over 30% to ~20% when we attempt to include radiative photons in the reconstruction. These studies are relevant to a large number of analyses which aim to study neutrinos by measuring electrons produced by $ u_e$ interactions over a broad energy range.
For a large liquid argon time projection chamber (LArTPC) operating on or near the Earths surface to detect neutrino interactions, the rejection of cosmogenic background is a critical and challenging task because of the large cosmic ray flux and the long drift time of the TPC. We introduce a superior cosmic background rejection procedure based on the Wire-Cell three-dimensional (3D) event reconstruction for LArTPCs. From an initial 1:20,000 neutrino to cosmic-ray background ratio, we demonstrate these tools on data from the MicroBooNE experiment and create a high performance generic neutrino event selection with a cosmic contamination of 14.9% (9.7%) for a visible energy region greater than O(200)~MeV. The neutrino interaction selection efficiency is 80.4% and 87.6% for inclusive $ u_mu$ charged-current and $ u_e$ charged-current interactions, respectively. This significantly improved performance compared to existing reconstruction algorithms, marks a major milestone toward reaching the scientific goals of LArTPC neutrino oscillation experiments operating near the Earths surface.
Large liquid argon time projection chambers (LArTPCs), especially those operating near the surface, are susceptible to space charge effects. In the context of LArTPCs, the space charge effect is the build-up of slow-moving positive ions in the detect or primarily due to ionization from cosmic rays, leading to a distortion of the electric field within the detector. This effect leads to a displacement in the reconstructed position of signal ionization electrons in LArTPC detectors (spatial distortions), as well as to variations in the amount of electron-ion recombination experienced by ionization throughout the volume of the TPC. We present techniques that can be used to measure and correct for space charge effects in large LArTPCs by making use of cosmic muons, including the use of track pairs to unambiguously pin down spatial distortions in three dimensions. The performance of these calibration techniques are studied using both Monte Carlo simulation and MicroBooNE data, utilizing a UV laser system as a means to estimate the systematic bias associated with the calibration methodology.
We present results on the reconstruction of electromagnetic (EM) activity from photons produced in charged current $ u_{mu}$ interactions with final state $pi^0$s. We employ a fully-automated reconstruction chain capable of identifying EM showers of $mathcal{O}$(100) MeV energy, relying on a combination of traditional reconstruction techniques together with novel machine-learning approaches. These studies demonstrate good energy resolution, and good agreement between data and simulation, relying on the reconstructed invariant $pi^0$ mass and other photon distributions for validation. The reconstruction techniques developed are applied to a selection of $ u_{mu} + {rm Ar} rightarrow mu + pi^0 + X$ candidate events to demonstrate the potential for calorimetric separation of photons from electrons and reconstruction of $pi^0$ kinematics.
The MicroBooNE detector utilizes a liquid argon time projection chamber (LArTPC) with an 85 t active mass to study neutrino interactions along the Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground level, the detector rec ords many cosmic muon tracks in each beam-related detector trigger that can be misidentified as signals of interest. To reduce these cosmogenic backgrounds, we have designed and constructed a TPC-external Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for High Energy Physics (LHEP), Albert Einstein center for fundamental physics, University of Bern. The system utilizes plastic scintillation modules to provide precise time and position information for TPC-traversing particles. Successful matching of TPC tracks and CRT data will allow us to reduce cosmogenic background and better characterize the light collection system and LArTPC data using cosmic muons. In this paper we describe the design and installation of the MicroBooNE CRT system and provide an overview of a series of tests done to verify the proper operation of the system and its components during installation, commissioning, and physics data-taking.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا