ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconstruction and Measurement of $mathcal{O}$(100) MeV Energy Electromagnetic Activity from $pi^0 rightarrow gammagamma$ Decays in the MicroBooNE LArTPC

134   0   0.0 ( 0 )
 نشر من قبل David Caratelli
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results on the reconstruction of electromagnetic (EM) activity from photons produced in charged current $ u_{mu}$ interactions with final state $pi^0$s. We employ a fully-automated reconstruction chain capable of identifying EM showers of $mathcal{O}$(100) MeV energy, relying on a combination of traditional reconstruction techniques together with novel machine-learning approaches. These studies demonstrate good energy resolution, and good agreement between data and simulation, relying on the reconstructed invariant $pi^0$ mass and other photon distributions for validation. The reconstruction techniques developed are applied to a selection of $ u_{mu} + {rm Ar} rightarrow mu + pi^0 + X$ candidate events to demonstrate the potential for calorimetric separation of photons from electrons and reconstruction of $pi^0$ kinematics.



قيم البحث

اقرأ أيضاً

The ArgoNeuT collaboration reports the first measurement of neutral current $pi^{0}$ production in $ u_{mu}$-argon and $bar{ u}_{mu}$-argon scattering. This measurement was performed using the ArgoNeuT liquid argon time projection chamber deployed at Fermilabs NuMI neutrino beam with an exposure corresponding to 1.2$times 10^{20}$ protons-on-target from the Fermilab Main Injector and a mean energy for $ u_{mu}$ of 9.6~GeV and for $bar{ u}_{mu}$ of 3.6~GeV. We compare the measured cross section and kinematic distributions to predictions from the GENIE and NuWro neutrino interaction event generators.
We report the first measurement of the flux-integrated cross section of $ u_{mu}$ charged-current single $pi^{0}$ production on argon. This measurement is performed with the MicroBooNE detector, an 85 ton active mass liquid argon time projection cham ber exposed to the Booster Neutrino Beam at Fermilab. This result on argon is compared to past measurements on lighter nuclei to investigate the scaling assumptions used in models of the production and transport of pions in neutrino-nucleus scattering. The techniques used are an important demonstration of the successful reconstruction and analysis of neutrino interactions producing electromagnetic final states using a liquid argon time projection chamber operating at the earths surface.
Time-integrated $CP$ asymmetries in $D^0$ decays to the final states $K^- K^+$ and $pi^- pi^+$ are measured using proton-proton collisions corresponding to $3mathrm{,fb}^{-1}$ of integrated luminosity collected at centre-of-mass energies of $7mathrm{ ,Tekern -0.1em V}$ and $8mathrm{,Tekern -0.1em V}$. The $D^0$ mesons are produced in semileptonic $b$-hadron decays, where the charge of the accompanying muon is used to determine the initial flavour of the charm meson. The difference in $CP$ asymmetries between the two final states is measured to be begin{align} Delta A_{CP} = A_{CP}(K^-K^+)-A_{CP}(pi^-pi^+) = (+0.14 pm 0.16mathrm{,(stat)} pm 0.08mathrm{,(syst)})% . onumber end{align} A measurement of $A_{CP}(K^-K^+)$ is obtained assuming negligible $CP$ violation in charm mixing and in Cabibbo-favoured $D$ decays. It is found to be begin{align} A_{CP}(K^-K^+) = (-0.06 pm 0.15mathrm{,(stat)} pm 0.10mathrm{,(syst)}) % , onumber end{align} where the correlation coefficient between $Delta A_{CP}$ and $A_{CP}(K^-K^+)$ is $rho=0.28$. By combining these results, the $CP$ asymmetry in the $D^0rightarrowpi^-pi^+$ channel is $A_{CP}(pi^-pi^+)=(-0.20pm0.19mathrm{,(stat)}pm0.10mathrm{,(syst)})%$.
A search for CP violation in $D^0 rightarrow K^{-} K^{+} $ and $D^0 rightarrow pi^{-} pi^{+} $ decays is performed using $pp$ collision data, corresponding to an integrated luminosity of $3~fb^{-1}$, collected using the LHCb detector at centre-of-mas s energies of 7 and $8~$TeV. The flavour of the charm meson is inferred from the charge of the pion in $D^{*+}rightarrow D^0pi^+$ and $D^{*-}rightarrow bar{D^0}pi^{-}$ decays. The difference between the CP asymmetries in $D^0 rightarrow K^{-} K^{+} $ and $D^0 rightarrow pi^{-} pi^{+} $ decays, $Delta A_{CP} equiv A_{CP}(K^{-} K^{+}) - A_{CP}(pi^{-} pi^{+})$, is measured to be $left( -0.10 pm 0.08(stat) pm 0.03(syst) right) %$. This is the most precise measurement of a time-integrated CP asymmetry in the charm sector from a single experiment.
We report the first measurement of the $T$-odd moments in the decay $D^{0} rightarrow K_{S}^{0} pi^{+} pi^{-} pi^{0}$ from a data sample corresponding to an integrated luminosity of $966,{rm fb}^{-1}$ collected by the Belle experiment at the KEKB asy mmetric-energy $e^+ e^-$ collider. From these moments we determine the $CP$-violation-sensitive asymmetry $a_{CP}^{Ttext{-odd}} = left[-0.28 pm 1.38 ~(rm{stat.}) ^{+0.23}_{-0.76} ~(rm{syst.})right] times 10^{-3}$, which is consistent with no $CP$ violation. In addition, we perform $a_{CP}^{Ttext{-odd}}$ measurements in different regions of the $D^{0} rightarrow K_{S}^{0} pi^{+} pi^{-} pi^{0}$ phase space; these are also consistent with no $CP$ violation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا