ﻻ يوجد ملخص باللغة العربية
Holography relates the quasinormal modes frequencies of AdS black holes to the pole structure of the dual field theory propagator. These modes thus provide the timescale for the approach to thermal equilibrium in the CFT. Here, we study how such pole structure and, in particular, the time to equilibrium can get modified in the presence of a black hole hair. More precisely, we consider in AdS a set of relaxed boundary conditions that allow for a low decaying graviton mode near the boundary, which triggers an additional degree of freedom. We solve the scalar field response on such background analytically and non-perturbatively in the hair parameter, and we obtain how the pole structure gets affected by the presence of a black hole hair, relative to that of the usual AdS black hole geometry. The setup we consider is a massive 3D gravity theory, which admits a one-parameter family deformation of BTZ solution and enables us to solve the problem analytically. The theory also admits an AdS$_3$ soliton which gives a family of vacua that can be constructed from the hairy black hole by means of a double Wick rotation. The spectrum of normal modes on the latter geometry can also be solved analytically; we study its properties in relation to those of the AdS$_3$ vacuum.
In this paper we investigate quasinormal modes (QNM) for a scalar field around a noncommutative Schwarzschild black hole. We verify the effect of noncommutativity on quasinormal frequencies by applying two procedures widely used in the literature. Th
We consider scalar and spinorial perturbations on a background described by a $z=3$ three-dimensional Lifshitz black hole. We obtained the corresponding quasinormal modes which perfectly agree with the analytical result for the quasinormal frequency
We give a new derivation of the quasinormal frequencies of Schwarzschild black holes in d>=4 and Reissner-Nordstrom black holes in d=4, in the limit of infinite damping. For Schwarzschild in d>=4 we find that the asymptotic real part is T_Hawking.log
This paper establishes the existence of quasinormal frequencies converging exponentially to the real axis for the Klein--Gordon equation on a Kerr-AdS spacetime when Dirichlet boundary conditions are imposed at the conformal boundary. The proof is ad
Four-dimensional $mathcal{N}=4$ supersymmetric Yang-Mills theory, at a point on the Coulomb branch where $SU(N)$ gauge symmetry is spontaneously broken to $SU(N-1)times U(1)$, admits BPS solitons describing a spherical shell of electric and/or magnet