ﻻ يوجد ملخص باللغة العربية
Spring-antispring systems have been investigated as possible low-frequency seismic isolation in high-precision optical experiments. These systems provide the possibility to tune the fundamental resonance frequency to, in principle, arbitrarily low values, and at the same time maintain a compact design of the isolation system. It was argued though that thermal noise in spring-antispring systems would not be as small as one may naively expect from lowering the fundamental resonance frequency. In this paper, we present a detailed calculation of the suspension thermal noise for a specific spring-antispring system, namely the Roberts linkage. We find a concise expression of the suspension thermal noise spectrum, which assumes a form very similar to the well-known expression for a simple pendulum. It is found that while the Roberts linkage can provide strong seismic isolation due to a very low fundamental resonance frequency, its thermal noise is rather determined by the dimension of the system. We argue that this is true for all horizontal mechanical isolation systems with spring-antispring dynamics. This imposes strict requirements on mechanical spring-antispring systems for the seismic isolation in potential future low-frequency gravitational-wave detectors as we discuss for the four main concepts: atom-interferometric, superconducting, torsion-bars, and conventional laser interferometer.
Currently planned second-generation gravitational-wave laser interferometers such as Advanced LIGO exploit the extensively investigated signal-recycling (SR) technique. Candidate Advanced LIGO configurations are usually designed to have two resonance
Second-generation interferometric gravitational-wave detectors will be operating at the Standard Quantum Limit, a sensitivity limitation set by the trade off between measurement accuracy and quantum back action, which is governed by the Heisenberg Un
In our previous research, simulation showed that a quantum locking scheme with homodyne detection in sub-cavities is effective in surpassing the quantum noise limit for Deci-hertz Interferometer Gravitational Wave Observatory (DECIGO) in a limited fr
Quantum fluctuation of light limits the sensitivity of advanced laser interferometric gravitational-wave detectors. It is one of the principal obstacles on the way towards the next-generation gravitational-wave observatories. The envisioned significa
Core optics components for high precision measurements are made of stable materials, having small optical and mechanical dissipation. The natural choice in many cases is glass, in particular fused silica. Glass is a solid amorphous state of material