ترغب بنشر مسار تعليمي؟ اضغط هنا

Spontaneous crystallization noise in mirrors of gravitational wave detectors

135   0   0.0 ( 0 )
 نشر من قبل Michael Gorodetsky
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Core optics components for high precision measurements are made of stable materials, having small optical and mechanical dissipation. The natural choice in many cases is glass, in particular fused silica. Glass is a solid amorphous state of material that couldnt become a crystal due to high viscosity. However thermodynamically or externally activated stimulated local processes of spontaneous crystallization (known as devitrification) are still possible. Being random, these processes can produce an additional noise, and influence the performance of such experiments as laser gravitational wave detection.



قيم البحث

اقرأ أيضاً

Spring-antispring systems have been investigated as possible low-frequency seismic isolation in high-precision optical experiments. These systems provide the possibility to tune the fundamental resonance frequency to, in principle, arbitrarily low va lues, and at the same time maintain a compact design of the isolation system. It was argued though that thermal noise in spring-antispring systems would not be as small as one may naively expect from lowering the fundamental resonance frequency. In this paper, we present a detailed calculation of the suspension thermal noise for a specific spring-antispring system, namely the Roberts linkage. We find a concise expression of the suspension thermal noise spectrum, which assumes a form very similar to the well-known expression for a simple pendulum. It is found that while the Roberts linkage can provide strong seismic isolation due to a very low fundamental resonance frequency, its thermal noise is rather determined by the dimension of the system. We argue that this is true for all horizontal mechanical isolation systems with spring-antispring dynamics. This imposes strict requirements on mechanical spring-antispring systems for the seismic isolation in potential future low-frequency gravitational-wave detectors as we discuss for the four main concepts: atom-interferometric, superconducting, torsion-bars, and conventional laser interferometer.
The astrophysical reach of current and future ground-based gravitational-wave detectors is mostly limited by quantum noise, induced by vacuum fluctuations entering the detector output port. The replacement of this ordinary vacuum field with a squeeze d vacuum field has proven to be an effective strategy to mitigate such quantum noise and it is currently used in advanced detectors. However, current squeezing cannot improve the noise across the whole spectrum because of the Heisenberg uncertainty principle: when shot noise at high frequencies is reduced, radiation pressure at low frequencies is increased. A broadband quantum noise reduction is possible by using a more complex squeezing source, obtained by reflecting the squeezed vacuum off a Fabry-Perot cavity, known as filter cavity. Here we report the first demonstration of a frequency-dependent squeezed vacuum source able to reduce quantum noise of advanced gravitational-wave detectors in their whole observation bandwidth. The experiment uses a suspended 300-m-long filter cavity, similar to the one planned for KAGRA, Advanced Virgo and Advanced LIGO, and capable of inducing a rotation of the squeezing ellipse below 100 Hz.
This paper reviews some of the key enabling technologies for advanced and future laser interferometer gravitational wave detectors, which must combine test masses with the lowest possible optical and acoustic losses, with high stability lasers and va rious techniques for suppressing noise. Sect. 1 of this paper presents a review of the acoustic properties of test masses. Sect. 2 reviews the technology of the amorphous dielectric coatings which are currently universally used for the mirrors in advanced laser interferometers, but for which lower acoustic loss would be very advantageous. In sect. 3 a new generation of crystalline optical coatings that offer a substantial reduction in thermal noise is reviewed. The optical properties of test masses are reviewed in sect. 4, with special focus on the properties of silicon, an important candidate material for future detectors. Sect. 5 of this paper presents the very low noise, high stability laser technology that underpins all advanced and next generation laser interferometers.
The Laser Interferometer Gravitational Wave Observatory (LIGO) consists of two widely separated 4 km laser interferometers designed to detect gravitational waves from distant astrophysical sources in the frequency range from 10 Hz to 10 kHz. The firs t observation run of the Advanced LIGO detectors started in September 2015 and ended in January 2016. A strain sensitivity of better than $10^{-23}/sqrt{text{Hz}}$ was achieved around 100 Hz. Understanding both the fundamental and the technical noise sources was critical for increasing the observable volume in the universe. The average distance at which coalescing binary black hole systems with individual masses of 30 $M_odot$ could be detected was 1.3 Gpc. Similarly, the range for binary neutron star inspirals was about 75 Mpc. With respect to the initial detectors, the observable volume of Universe increased respectively by a factor 69 and 43. These improvements allowed Advanced LIGO to detect the gravitational wave signal from the binary black hole coalescence, known as GW150914.
Precision measurements using traditional heterodyne readout suffer a 3dB quantum noise penalty compared with homodyne readout. The extra noise is caused by the quantum fluctuations in the image vacuum. We propose a two-carrier gravitational-wave dete ctor design that evades the 3dB quantum penalty of heterodyne readout. We further propose a new way of realising frequency-dependent squeezing utilising two-mode squeezing in our scheme. It naturally achieves more precise audio frequency signal measurements with radio frequency squeezing. In addition, the detector is compatible with other quantum nondemolition techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا