ﻻ يوجد ملخص باللغة العربية
Minimal forbidden factors are a useful tool for investigating properties of words and languages. Two factorial languages are distinct if and only if they have different (antifactorial) sets of minimal forbidden factors. There exist algorithms for computing the minimal forbidden factors of a word, as well as of a regular factorial language. Conversely, Crochemore et al. [IPL, 1998] gave an algorithm that, given the trie recognizing a finite antifactorial language $M$, computes a DFA recognizing the language whose set of minimal forbidden factors is $M$. In the same paper, they showed that the obtained DFA is minimal if the input trie recognizes the minimal forbidden factors of a single word. We generalize this result to the case of a circular word. We discuss several combinatorial properties of the minimal forbidden factors of a circular word. As a byproduct, we obtain a formal definition of the factor automaton of a circular word. Finally, we investigate the case of minimal forbidden factors of the circular Fibonacci words.
Given a (finite or infinite) subset $X$ of the free monoid $A^*$ over a finite alphabet $A$, the rank of $X$ is the minimal cardinality of a set $F$ such that $X subseteq F^*$. We say that a submonoid $M$ generated by $k$ elements of $A^*$ is {em $k$
Given a (finite or infinite) subset $X$ of the free monoid $A^*$ over a finite alphabet $A$, the rank of $X$ is the minimal cardinality of a set $F$ such that $X subseteq F^*$. A submonoid $M$ generated by $k$ elements of $A^*$ is $k$-maximal if ther
In this paper we study the enumeration and the construction, according to the number of ones, of particular binary words avoiding a fixed pattern. The growth of such words can be described by particular jumping and marked succession rules. This appro
A minimal absent word of a sequence x, is a sequence yt hat is not a factorof x, but all of its proper factors are factors of x as well. The set of minimal absent words uniquely defines the sequence itself. In recent times minimal absent words have b
In this paper, we extend the notion of Lyndon word to transfinite words. We prove two main results. We first show that, given a transfinite word, there exists a unique factorization in Lyndon words that are densely non-increasing, a relaxation of the